
GOVERNMENT OF ORISSA

WORKS DEPARTMENT

ORISSA STATE ROAD PROJECT

CONSULTING Engineers Group Ltd. Jaipur E-12, Moji Colony, Malviya Nagar, Jaipur, Raj. #+ 91-141-2520899, Telefax +91-141-2521348

E-mail : ceg@cegindia.com URL : www.cegindia.com

INDEX Chandbali to Bhadrak (0.0 - 45.0 km)

SI. No	Title	Pages
1	Introduction	1 to 12
2	Chapter-1	1 to 3
3	Chapter-2	1 to 3
4	Chapter-3	1 to 4
5	Chapter-4	1 to 4
6	Chapter-5	1 to 1
7	Chapter-6	1 to 9
8	Chapter-7	1 to 8
9	Chapter-8	1 to 8
10	Chapter-9	1 to 4
11	Chapter-10	1 to 4
12	Chapter-11	1 to 4
13	Chapter-12	1 to 8
14	Chapter-13	1 to 4
15	Chapter-14	1 to 4
16	Chapter-15	1 to 4
17	Chapter-16	1 to 8
18	Chapter-17	1 to 4
19	Chapter-18	1 to 1
20	Chapter-19	1 to 4
21	Chapter-20	1 to 4
22	Appendix	1 to 6

INTRODUCTION

HYDROLOGICAL STUDIES RELATED TO ORRISA STATE HIGHWAY NET WORK

1. General:

Hydrological inputs play a very vital role in planning, execution and operation of any water related structure. Hydrological studies are carried out at all the stages of project development starting from the pre-feasibility stage and are continued even during operation of the project. A casual approach may lead in extreme case to loss and destruction of structure due to higher flood than the expected floods; where as overdesigned structure may lead to very costly and uneconomical ones Proper selection of design value is of great importance. The Highway net work in a project area crosses a number of rivers/ tributaries / streams / nallahs with small, medium or large catchment and therefore for design of bridges and other structures, hydrological parameters of these structures are essentially required. It is an admitted fact that generally in most of the cases, the river net work does no have sufficient hydrological & meteorological records and most of the structure sites are ungauged. Though for determination of waterway, design flood at desired frequency for such structures are required, but economic constraints do not justify detailed hydrological and meteorological investigations at every such site on large scale and on long term basis for estimation of design flood with a desired return period. The system need to be based on a specific return period for fixing the water-way vis-à-vis the design highest flood level (HFL) and foundation depth of structure depending upon their life and importance to ensure safety as well as economy.

2. Criteria and standards in regard to design flood of structures of small and medium catchments

Khosla Committee of Engineers, appointed by the Government of India, had recommended a design flood of 50-Year return period for fixing the water ways of the structures/bridges. The Committee had also recommended designing the foundation and protection works for larger discharge by increasing the design flood for water ways by 30 % for small catchments and up to 500 Sq. km. by 25 to 20% for medium catchments up to 5000 Sq.km., by 20 to 10 % for large catchments up to 5000 Sq. km. to 25,000 Sq. km. and by less than 10% for very large catchments above 25,000 Sq. km.IRC 5-1985, clause 103 of Section-I,"General features of design" specifies that the water way of a bridge is to be designed from a maximum flood of 50-Year return period. To provide for adequate margin of safety, the foundation and protection works should be designed for larger discharges. The percentage increase over the design discharge recommended in this code is the same as suggested by the Committee of Engineers.

3. Methods /Models estimation of design flood peak

Depending upon the size of Project catchment, availability of field data and other primary data of Project area and the purpose for which it to be used ,various methods are available for design flood peak estimation such as,

- (a) Empirical formulae
- (b) Rational formula
- (c) Hydro-meteorological model
- (d) Statistical methods

3.1 Use of empirical formulae

During the past decade, number of inventers/scientists has evolved many empirical formulae, to be utilized in different zones across the World.I.R.C: SP: 13-2004, though have recommended using empirical formulae like Dicken's, Ryves and Inglis.Wherever hydrological records are inadequate, empirical formulae developed for the region is used. The common type of formula makes the flow function of catchment area i.e.M=C*(M)n. The important formulae used in India are Dicken's, Ryve and Inglis.The exponent 'n' assigned the value of 3/4,2/3 and1/2 respectively in Dicken,Ryve and Inglis formulae. Most popular formula in the region is Dicken's formula and is adopted for catchment area up to 25- 30 sq. Km.

However for small catchment area, the peak flood may be estimated using most popular Dicken's empirical formula can be adopted for catchment area up to 25-30 Sq.Km.

 $Q = C * (M)^{\frac{3}{4}}$

Where, Q = Peak runoff in cumecs M = Catchment area in Sq.km.
C= Dicken's constant
= 11-14 where the annual rainfall is 600 mm to 1200 mm
= 14- 19 where the annual rainfall is more than 1200 mm
= 22 in Western Ghats

3.2 Rational formulae

The rational formula for assessment of peak discharge from project catchment takes into account rainfall, runoff under various circumstances, time of concentration and critical intensity of rainfall. Basic formulae are as under:

One hour rainfall (I_0), $I_0 = (F/T)^*(T+1)/(1+1)$

Critical rainfall intensity $I_c = I_o^*(2/(1+t_c))$

Discharge Q=0.028 * P*f* A* I_c

Time of concentration (SP-13, page 12), $t_c = (0.87*L^3/H)^{0.385}$ Where.

 t_c = Time of concentration i.e time taken by runoff from farthest point on the periphery of catchment (hrs)

 I_{o} = One hour rainfall in cm.

I_c= Critical intensity of rainfall in cm per hour

- P= Coefficient of runoff for the catchment characteristics (Ref.Table-4.1, P-13, I.R.C. SP: 13-2004)
- A= Catchment area in hectare
- Q= Maximum discharge in cumecs.
- L= Distance from the critical point to the structure (Length of path) in Km.
- H= The difference in level from the critical point to the structure in metre

F= Maximum rain fall in mm

- T = Duration of storm in hours
- f = A fraction of maximum point intensity at the centre of he storm and related with the catchment area (Determined from Fig.4.2, Page-14, I.R.C.: SP: 13-2004.)

In the present study, storm rainfall and storm duration data of 50 –Year return period have been utilized from design flood hydrograph of near by project sites, developed on the basis of Hydro-meteorological studies as per Flood estimation reports of Mahanadi & Upper eastern coast sub-zones.

3.3 Hydro-meteorological methods-- Use of Unit Hydrograph

3.3.1 General

The regional flood estimation reports under long term plan of 26 Sub-Zones in India are available. The reports pertaining to Orrisa State, of various Corridors which cover under the present consultancy are as under:

(a) Sub-zone-III-d-Mahanadi basin: The sub-zone comprises of Mahanadi, Mahanadi and Baitarani are peninsular rivers, out falling into Bay of Bengal. The basin boundaries are located between

Longitudes 80 0 25 'to 87 0 East and Latitudes 19 0 to 23 0 35 'North.

(b) Sub-zone- IV-a- Upper Eastern coast: This sub-zone comprises of east flowing coastal rivers between deltas of Mahanadi and Godavari rivers. The Godavari delta falls in the sub-zone. A part the Sub-Zone lies in the Orrisa State approximately in between

Longitudes 84 0 to 85 045 'East and Latitudes 18 0 30' to 20 0 05 '.North

These reports have been formulated as a joint venture by the Ministry of Water resources through Central Water Commission, Research, and Designs & Standards Organization (RDSO) of Ministry of Railways, Ministry of Shipping & Transport (MOST) and India Meteorological Department (IMD) of Government of India.

The approach consists of working out regional Synthetic Unit hydrograph (SUG) parameters with pertinent physiographic characteristics from the recommended formulae in the particular Sub Zone flood estimation report, drawing and adjusting SUG, computation of design storm duration and point rainfall & areal rainfall, distribution of areal rainfall during design storm duration to obtain rainfall increments for unit duration intervals, assessment of effective rainfall units after subtraction of prescribed loss rate from rainfall increments ,estimation of hourly rainfall excess

,estimation of base flow and computation of 50-year peak flood and 50-year design flood hydrograph.

3.3.2 Approach for development of flood hydrograph (on regional basis)

3.3.2.1 Determination of physiographic parameters

Step 1: Preparation of Catchment area plan

The structure site point under study is located on the Survey of India map (G.T. sheet) and catchment/water shed boundary is marked.

Step 2: Determination of physiographic parameters from catchment area plan: (i) Catchment area: (A): The area enclosed in the catchment area boundary up to structure site is referred as the catchment area and measured.

(ii) Length of longest stream (L): Length of the longest main stream in Km. from the farthest point of catchment /water shed boundary to the point of study of structure site is marked and measured on catchment area plan.

(iii) Length of the longest main stream (L_c): From a point opposite/near to centre of gravity of catchment to point of study

(iv) Centre of gravity of catchment area: Determination of center of gravity of the catchment.

(v) Stream slope: Equivalent stream slope (S $_{eq}$): Equivalent slope can be computed by the formula: Longitudinal section is broadly divided into 3 to 4 segments and the following formula is used to calculate the Equivalent slope of main stream.

Where, $L_i = \text{Length of the ith segment in Km}$.

 $D_{I, Di-1}$ = Heights of successive bed location at the contour points and intersections (Elevations of the river/nallah bed at ith intersections points of contours are reckoned from the bed elevation at the point of study point/structure site considered as datum)

L = Length of the longest main stream, Km.

3.3.2.2 Determination of Synthetic Unit graph parameters

Step-3: The following SUG relationships are used to compute 1-hour SUG parameters for each structure site of different sub-zones pertaining to Orrisa State.

Recommended relations for determination of Synthetic Unit Hydrograph (a) Synthetic relation between basin lag tp and physiographic parameters: tp-Time from the centre of unit rainfall duration to the peak of unit hydrograph in hours, tp =a1*[(L*Lc)*(S)1/2]b1

(b)Synthetic relation between unit peak rate (qp) of the unit hydrograph and basin lag (tp): qp- Peak discharge of unit hydrograph per unit area in cmecs./Sq.Km, qp =a2 / (tp) b2

(c) Qp-Peak discharge of unit hydrograph in cumecs. = qp *A

(d) Synthetic relation between unit discharge (qp) and W50- Width of unit graph measured in hours at discharge ordinate equal to 50 % of Qp , W50 =a3 / (qp)b3

(e) Synthetic relation between unit discharge (qp) and W75- Width of unit hydrograph measured in hours at discharge ordinate equal to 75 % of Qp, W75 =a4 / (qp)b4

(f) Synthetic relation between unit discharge (qp) and WR-50- Width of the rising limb side of unit hydrograph measured in hours at discharge ordinate equal to 50% of Qp, WR-50 = a5 / (qp) b5

(g) Synthetic relation between unit discharge (qp) and WR-75-Width of the rising limb side of unit hydrograph measured in hours at discharge ordinate equal to 75 % of Qp, WR-75 = a6 / (qp) b6

(h) Synthetic relation between the basin lag (tp) and base width of unit hydrograph-TB –Base width of unit hydrograph in Hours, TB = a7 * (tp) b7

(i) Tm- Time from start of rise to the peak of the unit hydrograph in hours = tp + tr / 2

(j) TD- Design storm duration in hours = 1.

Values of constants 'a ' and 'b ' for various Synthetic hydrograph parameters			
are as under			

S.No.	Unit hydrograph Para	meter Mahanadi basin-III(d) U	pper Eastern Coast-VI(A)
(1)	(2)	(3)	(4)
1	tr	1	1
2	t_{p-a1}	1.757	0.376
	-b1	0.261	0.434
3	q_{p} , a_2	1.260	1.215
	- b ₂	0.725	0.691
4	W ₅₀ a ₃	1.974	2.211

	b ₃	1.104	1.070
5	W ₇₅ a ₄	0.961	1.312
	b ₄	1.125	1.003
6	W _{R-50-} a ₅	1.150	0.808
	- b ₅	0.829	1.053
7	W _{R-75-} a ₆	0.527	0.542
	- b ₆	0.932	0.965
8	$T_B a_7$	5.411	7.621
	- b ₇	0.826	0.623
9	T _m	$t_{p + tr/2}$	$t_{p + tr/2}$
10	Qp	$A * \mathbf{q}_{\mathbf{p}}$	$\mathbf{A} * \mathbf{q}_{\mathbf{p}}$
11	T _D	1.1*t _P	1.1*t _P

Step-4-The steps for derivation of 1-hour unit graph are as under

- (i) Obtain unit graph parameters viz. t_p , q_p , W_{50} , W_{75} , W_{R-50} , W_{R-75} and T_B by substituting appropriate basin/unit graph parameters given in the above equation.
- (ii) The above estimated parameters of unit graph are plotted on a natural graph paper and the plotted points are joined to draw synthetic unit graph. Suitable adjustment is made to ensure that volume of unit graph is 1 cm. depth of effective rainfall over the catchment. The discharge ordinates (Qi) of the unit graph at ti=tr =1 hr interval is summed up i.e. Σ Qi * ti (cumecs./hr.) and compared with the volume of 1.0 cm. direct runoff depth over the catchment with the formula . Σ Qi * ti =2.78*A*d/ti
- Where, A= Catchment area in Sq.Km. d=1.0 cm. depth $t_i = t_r \text{ (the unit duration of the UG) = 1.0 hr.}$ $\sum Q_i * t_i = A * d / 0.36 * t_r = A * 1 / 0.36 * 1 \text{ (cumecs./ hr.)}$

In case the \sum Qi * ti for the unit graph drawn is higher or lower than the volume worked out by the above formula ,then the falling limb and / or rising limb(preferably falling limb) may be suitably modified to get the correct volume under the hydrograph, taking care not to disturb the smooth shape of the unit graph.

3.3.2.3 Step 5: Design loss rate: The loss rate is an index of all the hydrologic abstractions like infiltration and evapotranspiration etc. Different loss rate and procedures are applicable for different sub-zones:

(a) For Mahanadi sub basin –Sub-zone -III-d: Estimation of loss rate for this sub zone is calculated as per the prescribed design loss rate curve. With t_p less than 5 hours, design loss rate of 0.26 cm. /hour is recommended. Between storm durations of 5 to 13 hours, the loss rates vary between 0.26 cm. / hr to 0.15 cm. / hr.For a storm duration of more than 13 hours, it remains constant at 0.15 cm. /hour.

(b) For Eastern coast region sub-zone-IV-a: Design loss rate of 0.75 cm /hour is recommended for adoption in this sub-zone.

3.3.2.4 Step-6 -Design Base flow: The base flow is separated through the normal procedure to obtain direct run off hydrograph and direct runoff depth over the catchment for each flood event.

(a) For Mahanadi sub basin (III-d): Estimation of design base flow for this sub zone is recommended to calculate at the rate of 0.10 cumecs./ Sq.Km.

(b) For eastern Coast region sub-zone-IV-a: The base flow q_b in cumecs./Sq.Km. is calculated for this sub-zone : $q_b = 0.536 / (A)^{0.523}$

3.3.2.5 Procedure for estimation of design storm rainfall: The areal distribution and time distribution of rainfall of a given duration are two main meteorological factors deciding the design flood peak and the shape of the hydrograph. This input has to be converted into effective rainfall and applied to the transfer function (Synthetic unit hydrograph) to obtain the response (flood hydrograph).

(a) **Isopluvial maps:**.. The isopluvial maps of 50- Year, 24- hour rainfall are available, which can be used to derive 24-hour rainfall estimates for 50-year return period at any desired location in the sub-zone

Procedure: Locate project site / structure site, with the help of their Latitude and Longitude, under study on 50-Year, 24-hour isopluvial map and obtain the 50-Year, 24-hour point rainfall value in cm. For a catchment covering more than one isopluvial, compute the average point rainfall.

(b) Short duration ratios:.

Procedure- Read the conversion ratio for particular storm duration T_D from the available Table/Figure and multiply the 50-Year .24-hour point rain fall values in Step 8 (a) to obtain 50-Year T_D hour point rainfall.

(c) Areal reduction factor (ARF):

Procedure-Read the areal reduction factor corresponding to storm duration T_D and the given catchment area of Project site in the available Table / Figure and multiply the 50- Year, T_D -hour rainfall in Step-8(b) by this factor to obtain the 50-Year , T_D -hour areal rain fall over the catchment.

(d) Time distribution factor:.

Procedure- Read the time distribution co-efficients for 1,2,-----(T_D -1) hours corresponding to storm duration T_D from the relevant graph/Table and multiply the 50- Year T_D -hour areal rainfall in Step -8(C) by these coefficients to obtain cumulative depths of 1, 2,-----(T_D -1) hour catchment rainfall.

(e) **Depth of storm rainfall** -Obtain the depths of storm rain fall occurring every hour in the structure site catchment by subtracting (d) of the successive depths of 1,2,,-----(T_D -1) and T_D hours in Step -8(d).

3.3.2.6 Estimation of design flood:

Step-9-Effective rain fall increments:

- i. Obtain design storm rain fall and hourly areal rain fall units as per Step-8(e).
- ii. Obtain hourly effective rainfall increments by subtracting the design loss rate.

Step-10: Estimation of 50-yr. flood (Peak only):

- i. Arrange 1-hour effective areal rainfall values against the 1-hour Unit graph ordinates such that the maximum value of effective rainfall is positioned against the maximum ordinate of Unit graph, the next lower of effective rainfall against the next lower Unit graph ordinate and so on up to TD hour duration.
- ii. Obtain the base flow for the catchment area under study.
- iii. Obtain total surface runoff by summing the product of unit hydrograph ordinate and the effective rainfall increments give the total direct run-off peak.

(iv)By adding base flow, 50-year flood peak is obtained.

3.3.2.7 Design flood hydrograph:

Step-11: Computation of design flood hydrograph:

For computation of design flood hydrograph, carry out the following additional steps;

- iv. Reverse the sequence of effective rainfall units obtained in the above step-10(i) to get the critical sequence of the effective rainfall units.
- v. Multiply the first 1-hour effective rainfall with the ordinates of Unit graph to get the corresponding direct run off ordinate. Like wise, repeat the procedure with the rest of the hourly effective rainfall values giving a lag of 1-hour to successive direct runoff ordinate.
- vi. Add the direct runoff ordinates at 1-hour interval to get the total direct runoff hydrograph.
- vii. Add the base flow to the direct runoff ordinates at 1-hour interval to get 50-Year flood hydrograph.

4.0 Linear Water way of the bridge

4.1 The linear water way/regime width (W) of a bridge across a purely alluvial stream in regime state according to Lacey's formula, $W = C (Q)^{1/2}$ Where, W= Liner water way in metre

C = A coefficient varying according to local conditions, the usual value adopted being 4.5 to 6.3 (for regime channel). I.R.C.-13 recommends to adopt value of C = 4.8 and Q = Design flood discharge in cumecs.

4.2 Criteria and standard for design flood: Indian Road Congress (I.R.C-5) specifies * That water way for a highway bridge needs to be designed for a maximum peak flood discharge of 50-year return period.

* Foundation and protection works of the structure should be designed for larger discharge by increasing design flood

- a) Waterways may be increased by 30% to 25% for small catchments up to 500 sq.km
- b) Waterways may be increased by 25% to 20% for medium catchments up to 500 to 5000 sq.km.
- c) Waterways may be increased by 20% to 10% for large catchments up to 5000 to 25000 sq.km. and
- d) Waterways may be increased by 10% for very large catchments, above 25000 sq.km.

4.3 Scour depth:

As per I.R.C.:78-2000, Clause: 703.1.1 Scour depth in metre,

 $d_{sf} = 1.34 * [(D_b)^2] / (K_{sf})^{1/3}$

 D_b = Unit discharge in cu.mecs/ metre Q_R= Total discharge in cu.mecs

Design discharge per metre width at effective linear water way over scourable bed D_b = Increase design discharge (Q_R) /Regime width (W)

4.4 Silt factor: For the regime characteristics of an alluvial channel, Lacey suggested a silt factor and its value depends upon the size and looseness of the grains of the alluvium. The value of silt factor (K_{sf}) is given by the relation,

 $K_{sf} = 1.76 (d_m)^{1/2}$ Where, d_m is the weighted mean diameter of the particles in mm.

In design calculations value of silt factor based on geotechnical investigation of a particular or near by site by taking value at average depth has been considered.

4.5 Regime velocity of flow: V =
$$0.44 * (Q)^{1/6} / (K_{sf})^{1/3}$$

4.6 Maximum scour depth: The maximum depth of scour below the highest flood Level (HFL) at obstructions and configurations of the channel should be estimated from the value of ' d_{sf} 'on the following basis:

(a) For the design of piers and abutments located in a straight reach and having individual foundations without any floor protection works

(i) In the vicinity of piers = 2.0 * dsf

(ii) Near abutments = 1.27 * dsf

4.7 Vertical clearance and other parameters as per I.R.C. standard

Discharge in cumecs.	Vertical clearance / Free board (metre)
Below 0.30	0.15
0.30 3.00	0.30
3.00 - 30.0	0.60
30.0—300.0	0.90
300.0—3,000.0	1.20
Above 3,000.0	1.50

4.8 Manning's formula: For estimation of design flood based on field data, knowing the slope of the stream (S), Velocity as per Manning's formula is given by the relation,

Velocity of flow in a channel

 $V = 1 / n * (R)^{2/3} * (S)^{1/2}$

Where, V = Mean velocity of flow in m/sec.

R= Hydraulic radius in metre = A/P,

A = Water area i.e. area of flow in Sq.m.

P =Wetted perimeter in metre

S = Slope of the energy line (When flow is uniform, energy slope gradient may become parallel to the water surface slope and bed of the channel)

 η = Coefficient of roughness

Discharge, Q = A* V, in cumecs.= A * 1 /
$$\eta$$
 * (R)^{2/3} * (S)^{1/2}
= 1 / η * W *(R)^{2/3} * (S)^{1/2}
R = A/P
Q = A * (A/P)^{2/3} * [1 / η * (S)^{1/2}]
or Q = 1 / η * (S)^{1/2}* [(A)⁵ /(P)²] ^{1/3}
Knowing Q, W and S, D can be calculated.

4.9 Afflux: When a bridge is constructed across a contracted stream, water on the upstream will rise up. Afflux is the rise or heading up of water level, above the normal, on the upstream side of a structure caused by an obstruction across the channel (abutments and piers of structure). Since the downstream depth is not affected by the bridge, as the same is governed by the hydraulic characteristics (conveyance factor and slope of the channel below the bridge), of the downstream channel, it can be safely assumed that the upstream depth which prevailed before the bridge construction is the same as the downstream depth (D_d) that prevails after the bridge construction. Hence, D_d is the depth that prevailed at bridge site before the

construction of the bridge. To estimate, it is essential to know D_d . This can be calculated by the hydraulic parameters of the channel.

4.9.1 Broad Crested Weir formula:

 $Q = 1.706 * C_w * L * H^{3/2}$

Where, Q =Discharge through the opening in cumecs.

 C_w = Coefficient of discharge accounting for losses in friction.

L = Linear water way in metre

H = Total energy head upstream of the obstruction in metre = $D_u + V^2 / 2 * g$

 D_u = Depth of flow upstream in metre

 $V^2 / 2 *g =$ Velocity head, where V is the average velocity in the approach section worked out from the known width (W) of the unobstructed section.

W = Width of unobstructed section

So long as the afflux (D_u-D_d) is not less than 1/4 $*D_d$, Weir formula is applies ,i.e. Q depends on D_u and independent of D_d . The fact that the downstream depth D_d has no effect on the discharge Q, nor on the upstream depth D_u when the afflux is not less than 1/4* D_d is due to the formation of the standing wave.

4.9.2 Orifice formula: When the downstream depth is more than 80 % of the upstream depth i.e. the afflux is less than $1/4D_d$, the weir formula is not valid as the performance of the Bridge opening gets affected by the downstream depth(D_u). In such a case, the discharge can be calculated by using the Orifice formula given by the relation,

$$Q = C_0 * (2 * g)^{1/2} * L * D_d * [h + (1+e)* V^2 / 2 * g]^{1/2}$$

Where, $Q = D$ is charge through the opening in cu.mecs.

 C_0 = Coefficient of discharge

g = Acceleration due to gravity

L = Linear water way in metre

 D_{d} = Depth downstream of the obstruction in metre

h = Afflux in metre

e = A factor accounting for recovery of some velocity as potential head on emergence from the cross drainage openings, and V = Average velocity in approach section in metre/sec.

The value of 'C $_0$ 'and 'e 'to be adopted are given in I.R.C .The afflux can be calculated knowing (i) Discharge, (ii) the unobstructed width of the stream and (iii) the average depth downstream of the cross drainage work opening.

5.0 Present study: Detailed hydrological studies of bridge structures located on Bhawanipatna-Kheriar, State Highway-16 has been carried out. Physiographic parameters of various structure sites have assessed on the basis of G.T. sheets of the area as available on scale 1: 50,000 & 1: 2, 50,000.Inputs in the study includes the

field surveys data, road inventory records, geo-technical investigations and informations gathered during field visit. Presently this corridor has 14 minor bridges at independent locations, one major bridge on river Sunder and one major bridge on river Tel including another five minor bridges at nearby locations on Tel River. Design discharge at each structure site has been estimated through various available approaches. Use of IRC-5-1998, IRC-SP-13-2004, I.R.C-78- 2000 and Regional Hydro meteorological Flood Estimation Reports prepared by Hydrology Organization, Central Water Commission, Government of India for Mahanadi Subzone-3(d) and East Coast region Sub-Zone Report-4(a).The detailed hydrological parameters of various structures are given in the report.

(BHADRAK TO CHANDBALI,SH-9) (0 TO 45 km)

CHAPTER-1

BRIDGE AT CH:1/005

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

1. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1 Name of the Nala : 2. No. polo

Road No :	S.H - 9
G.T S No :	73K
Nearest Village :	Bhadrak
RD :	Km.1.005
Latitude	21 ⁰ 4' 00"
Longitude	86 ⁰ 31' 00"
Sub-Zone	3(d)

2 Discharge by Dicken's Formula

Discharge as per Dicken's formula	(Refer SP-13, page 7)	
$Q = CM^{3/4}$		
C = 14-19 whe	ere annual rainfall is more than 120 cm	
= 11-14 whe	re annual rainfall is 60-120 cm	
= 22 in west	ern Ghats	
C adopted	(Since Rain fall is more than 120 cm)	19
M = Catchmer	nt area	0.230 sqkm
Q =		6.31 cum/s

3 Discharge by Rational Formula

Catchment area	0.230	sqkm 23.00	hectares	
Length of path from toposheet (L)			km	
Difference in levels from toposheet	(H)	10	m	
(Ref: Index map)				
Maximum rain fall (F)	(Ref. SUG of Nanojora River)	216.05	mm	
Duaration of storm (T)		5	hrs	
One hour rainfall (Io)	$Io = (F/T)^{*}(T+1)/(1+1)$	129.63	mm/hr	
Time of concentration (SP-13, Page 12) $tc = (0.87*L^3/H)^{0.385}$			hrs.	
Critical rainfall intensity $Ic = Io^{*}(2/(1+tc))$			mm/hr	
Discharge Q = 0.028 * P*f* A* Ic				
P = (for loam, lightly cultiv	rated or covered)	0.400		
f =		1.00		
A =		23.00	Hectares	
lc =		15.965	cm/hr	
Q =		4.113	cum/sec	

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 $I_0 =$ One hour rainfall in cm.

- I_c = Critical intensity of rainfall in cm per hour
- P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,SP:13-2004)
- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.

- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge (Refe	er SP-13, page 21)	
	Discharge by Dicken's Formula		6.31 cum/sec
	Discharge by Rational Formula		4.11 cum/sec
	Maximum discharge		6.31 cum/sec
	Next maximum discharge		4.11 cum/sec
	Hence design discharge		6.17 cum/sec
5	Linear Water Way		
	Regime width	$W = 4.8 * Q^{1/2}$	11.92 m
	(Refer IRC:5-1998, Clause 104.3 or SP-13	3, Page 23)	
6	Span arrangement		
	In proposed span arrangement, triple cell o	of 3.0 m has been proposed	9.00 m
	with bed protection.		
7	Scour depth		
	Increase in design discharge, as per IRC:7	78-2000,Clause 703.1.1	30%
	Increased design discharge		8.02 cum/sec
	Mean depth of scour, as per IRC:78-2000,	Clause 703.2	
	$d_{sf} = 1.34 ({D_b}^2/K_{sf})^{1/2}$	/3	
	Db = Design dischar	ge per metre width	0.89 cum/sec/m
	$K_{sf} = Silt factor$		2.09
	d _{sf} =		0.97
	Maximum scour depth, as per IRC:78-200	0, Clause 703.3	
	for Pier 2 d _{sf}		1.94 m
	for Abutment 1.27	d _{sf}	1.23 m
8	Vertical Clearance		
	Vertical clearance for opening of high leve	I bridge, from the lowest point	
	0f deck structure (Ref.I.R.C5-1998,Claus	.e-106.2.1,Page-16)	0.6 m
9	Deck level		
	HFL at existing bridge site		17.770 m
	Minimum vertical clearance (Table 12.1 of	SP-13)	0.600 m
	Depth of super structure including camber		0.450 m
	Wearing coat		0.056 m
	Minimum deck level required as per hydra	ulic conditions	18.876 m
	Deck level of the existing bridge		18.070 m
	Minimum deck level proposed		18.876 m
	As per the proposed allignment, the forma	tion loval of bridge has been kent as 18 (97 m

As per the proposed allignment, the formation level of bridge has been kept as 18.97 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

HFL Bed lev Maximu	discharge el Im scour depth Im scour level			6.17 cum/ 17.770 m 16.061 m 1.94 m 15.829 m	'sec
Curtain wall shall be Bed level Scour depth below b	provided below maximur ed	m scour level		16.061 m 0.23 m	
Minimum depth of cu	ırtan wall as per IRC:89-	1997	u/s d/s	2 m 2.5 m	
Provide depth of curt	ain wall		u/s d/s	2.0 m 2.5 m	
Rigid apron as per IF	RC:89-1997		u/s d/s	3.0 m 5.0 m	
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 0.46 0.46	Provided 3.0 m 6.0 m	

CHAPTER-2

BRIDGE AT CH:1/800

2. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala :	3. No. polo
	Road No.:	S.H - 9
	G.T S No :	73K
	Nearest Village :	Bhadrak
	RD :	Km.1.800
	Latitude	21 ⁰ 3' 00"
	Longitude	86 ⁰ 31' 00"
	Sub-Zone	3(d)

2 Discharge by Dicken's Formula

Discharge as per Dicken's formula $\mbox{Q} = \mbox{CM}^{3/4} \label{eq:Q}$	(refer SP-13, page 7)	
C = 14-19 wh	ere annual rainfall is more than 120 cm	
= 11-14 whe	ere annual rainfall is 60-120 cm	
= 22 in wes	tern Ghats	
C adopted	(Since Rain fall is more than 120 cm)	19
M = Catchme	nt area	0.225 sqkm
Q =		6.21 cum/s

3 Discharge by Rational Formula

Catchment area	0.225 sqkm	22.50 hectares
Length of path from toposheet (L)		1.500 km
Difference in levels from toposheet (H)		10 m
(Ref: Index map)	(Ref. SUG of Nanojora River)	
Maximum rain fall (F)		216.05 mm
Duaration of storm (T)		5 hrs
One hour rainfall (lo)	$lo = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr
Time of concentration (I.R.C. SP-13, Pa	age 12) $tc = (0.87*L^3/H)^{0.385}$	0.62 hrs.
Critical rainfall intensity $Ic = Io^{*}(2/(1+tc))$		159.65 mm/hr
Discharge Q = 0.028 * P*f* A* Ic		
P = (for loam, lightly cultivat	ed or covered)	0.400
f =		1.00
A =		22.50 Hectares
Ic =		15.965 cm/hr
Q=		4.023 cum/sec

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 I_0 = One hour rainfall in cm.

I_c= Critical intensity of rainfall in cm per hour

P = Coefficient of runoff for the catchment characteristics (Ref. Table-4.1P-13, I.R.C.:SP:13-2004)

A = Catchment area in hectare

Q = Maximum discharge in cumecs.

L = Distance from the critical point to the structure in Km.

H = The fall in level from the critical point to the structure in metre

4	Design Discharge (Refer I.R.C.SP-13, page 21)	
	Discharge by Dicken's Formula		6.21 cum/sec
	Discharge by Rational Formula		4.02 cum/sec
	Maximum discharge		6.21 cum/sec
	Next maximum discharge		4.02 cum/sec
	Hence design discharge		6.03 cum/sec
5	Linear Water Way	4/0	
	Regime width	W=4.8*Q ^{1/2}	11.79 m
	(Refer IRC:5-1998, Clause 104.3 or SP-13, Page 23)		
~			
6	Span arrangement		9.00 m
	In proposed span arrangement, triple cell of 3.0 m has been proposed	d	9.00 m
	with bed protection.		
_			
7	Scour depth		
	Increase in design discharge, as per IRC:78-2000,Clause 703.1.1		30%
	Increased design discharge		7.85 cum/sec
	Mean depth of scour, as per IRC:78-2000, Clause 703.2 $d_{Sf} = 1.34 \ \left(D_b^{\ 2}/K_{Sf} \right)^{1/3}$		
	Db = Design discharge per metre width		0.87 cum/sec/m
	$K_{sf} = Silt factor$		1.750
	d _{sf} =		1.01
	Maximum scour depth, as per IRC:78-2000, Clause 703.3		
	for Pier 2 d _{sf}		2.03 m
	for Abutment 1.27 d _{sf}		1.29 m
8	Vertical Clearance		
	Vertical clearance for opening of high level bridge, from the lowest po	int	
	0f deck structure (Ref.I.R.C5-1998,Clause-106.2.1,Page-16)		0.6 m
-			
9			40.000
	HFL at existing bridge site including		16.306 m
	Minimum vertical clearance (Table 12.1 of SP-13)		0.600 m
	Depth of super structure including camber		0.450 m
	Wearing coat		0.056 m
	Minimum deck level required as per hydraulic conditions		17.412 m
	Deck level of the existing bridge		17.730 m
	Minimum deck level proposed		17.730 m
	As per the proposed alignment, the formation level of bridge has been	nept as 17.73 m	

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

	Design discharge HFL Bed level Maximum scour depth Maximum scour level				6.03 16.306 14.700 2.03 14.277	m m
Curtain wall Bed level Scour depth	shall be provided below below bed	maximum s	cour level		14.7 0.42	
Minimum de	pth of curtan wall as per	IRC:89-199	7	u/s d/s	2 2.5	
Provide dep	th of curtain wall			u/s d/s	2.0 2.5	
Rigid apron	as per IRC:89-1997			u/s d/s	3.0 5.0	
Flexible apro	on	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 0.85 0.85	Provided 3.0 6.0	

CHAPTER-3

BRIDGE AT CH:3/200

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

3. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala:	6. No. Bridge			
	Road No.:	S.H - 9			
	G.T S No :	73K			
	Nearest Village :	Mirjapur			
	RD :	Km.3.200			
	Latitude	21 ⁰ 3' 00"			
	Longitude	86 ⁰ 31' 30"			
	Sub-Zone	3(d)			
2	Discharge by Dicke	n's Formula			
	Discharge as per Dic			(Refer SP-13, page 7)	
		$Q = CM^{3/4}$			
		C = 14-19 whe	ere annual rainfall	is more than 120 cm	
		= 11-14 whe	re annual rainfall	is 60-120 cm	
		= 22 in weste	ern Ghats		
		C adopted	(Since Rain fall	is more than 120 cm)	19
		M = Catchmen	nt area		2.200 sqkm
		Q =			34.32 cum/s
3	Discharge by Ration	nal Formula			
	Catchment area			2.200 sqkm	220.00 hectares
	Length of path from the	oposheet (L)			1.200 km
	Difference in levels fr	om toposheet (H	ł)		10 m
	(Ref: Index map)				
	Maximum rain fall (F)		(Ref: SUG of N	anojora River)	216.05 mm
	Duaration of storm (T	-)			5 hrs
	One hour rainfall (Io)		$lo = (F/T)^{*}(T+1)$		129.63 mm/hr
	Time of concentration	n (I.R.C. SP-13,	Page 12)	$tc = (0.87*L^3/H)^{0.385}$	0.48 hrs.
	Critical rainfall intensi	ty Ic = Io*(2/(1+t	tc)		174.92 mm/hr
	Discharge Q = 0.028	* P*f* A* Ic			
	P = (for loa	am, lightly cultiva	ated or covered)		0.400
	f =				1.00
	A =				220.00 Hectares
	lc =				17.492 cm/hr
	Q=				43.101 cum/sec

0.9 m

Here,

- t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment
- I_o= One hour rainfall in cm.
- I_c= Critical intensity of rainfall in cm per hour
- P = Coefficient of runoff for the catchment characteristics (Ref. Table-4.1P-13, I.R.C.: SP:13-2004)
- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.

Of deck structure (Ref.I.R.C.-5-1998, Clause-106.2.1, Page-16)

H = The fall in level from the critical point to the structure in metre

4	Design Discharge	(Refer I.R.C.SP-13, page 21)		
	Discharge by Dicken's Formula			34.32 cum/sec
	Discharge by Rational Formula			43.10 cum/sec
	Maximum discharge			43.10 cum/sec
	Next maximum discharge			34.32 cum/sec
	Hence design discharge			43.10 cum/sec
5	Linear Water Way Regime width		W=4.8*Q ^{1/2}	31.51 m
	-		W=4.0 Q	31.51 11
	(Refer IRC:5-1998, Clause 104.3)	or SP-13, Page 23)		
6	Span arrangement			
	In proposed span arrangement, do	uble cell of 8.0 m has been propos	ed	16.00 m
	with bed protection.			
_				
7	Scour depth			000/
	Increase in design discharge, as p	er IRC:/8-2000,Clause /03.1.1		30%
	Increased design discharge		56.03 cum/sec	
	Mean depth of scour, as per IRC:7			
	d _{sf} = 1.34 (-		
	-	n discharge per metre width		3.50 cum/sec/m
	K _{sf} = Silt fa	ctor		1.676
	d _{sf} =			2.60
	Maximum scour depth, as per IRC			
	for Pier	2 d _{sf}		5.20 m
	for Abutme	nt 1.27 d _{sf}		3.30 m
8	Vertical Clearance			
-		gh level bridge, from the lowest poi	nt	
		3 · · · · · · · · · · · · · · · · · · ·	-	

2

9 Deck level

HFL at existing bridge site	16.765 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.900 m
Depth of super structure including camber	0.400 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	18.121 m
Deck level of the existing bridge	16.765 m
Minimum deck level proposed	18.121 m

As per the proposed allignment, the formation level of bridge has been kept as 18.24 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour d Maximum scour l	depth			43.10 cum/sec 16.765 m 13.844 m 5.20 m 11.562 m
Curtain wall shall be provided Bed level Scour depth below bed	below maximum	scour level		13.844 m 2.28 m
Minimum depth of curtan wall	as per IRC:89-19	97	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	3.0 m 3.5 m
Rigid apron as per IRC:89-199	17		u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 4.56 4.56	Provided 5.0 m 6.0 m

CHAPTER-4

BRIDGE AT CH:3/900

4. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala	:	Haladia I	Bypass	Bridge
---	------------------	---	-----------	--------	--------

Road No.:	S.H - 9
G.T S No :	73K
Nearest Village :	Haladia
RD :	Km.3.900
Latitude	21 ⁰ 2' 00"
Longitude	86 ⁰ 31' 00"
Sub-Zone	3(d)

2 Discharge by Dicken's Formula

Discharge as per Dicken's formula $\mbox{Q} = \mbox{CM}^{3/4} \label{eq:Q}$	(Refer SP-13, page 7)	
C = 14-19 whe		
= 11-14 whe	re annual rainfall is 60-120 cm	
= 22 in west	ern Ghats	
C adopted	(Since Rain fall is more than 120 cm)	19
M = Catchmer	nt area	2.5 sqkm
Q =		37.78 cum/s

3 Discharge by Rational Formula

Catchment area	2.500 sqkm	250.00 hectares
Length of path from toposheet (L)	3.750 km
Difference in levels from toposhe	et (H)	5 m
(Ref: Index map)		
Maximum rain fall (F)	(Ref.SUG of Nanojora River)	216.05 mm
Duaration of storm (T)		5 hrs
One hour rainfall (lo)	$lo = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr
Time of concentration (I.R.C. SP	-13, Page 12) $tc = (0.87*L^3/H)^{0.385}$	2.35 hrs.
Critical rainfall intensity Ic = Io*(2	/(1+tc)	77.45 mm/hr
Discharge Q = 0.028 * P*f* A* Ic		
P = (for loam, lightly c	ultivated or covered)	0.400
f =		1.00
A =		250.00 Hectares
lc =		7.745 cm/hr
Q =		21.69 cum/sec

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 $I_o =$ One hour rainfall in cm.

- I_c = Critical intensity of rainfall in cm per hour
- P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)
- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge		(Refer I.R.C.SP-13, page 21	1)	
	Discharge by Dicken	's Formula			37.78 cum/sec
	Discharge by Rationa	al Formula			21.69 cum/sec
	Maximum discharge				37.78 cum/sec
	Next maximum disch	arge			21.69 cum/sec
	Hence design disch	arge			32.53 cum/sec
5	Linear Water Way			1/0	
	Regime width			W=4.8*Q ^{1/2}	27.38 m
	(Refer IRC:5-1998, C	Clause 104.3 or S	SP-13, Page 23)		
_	_				
6	Span arrangement				
		angement, doub	le cell of 8.0 m has been propo	osed	16.00 m
	with bed protection.				
7	Scour depth				
	Increase in design dis	scharge, as per	IRC:78-2000,Clause 703.1.1		30%
	Increased design disc	charge			42.29 cum/sec
	Mean depth of scour,	, as per IRC:78-2 d _{sf} = 1.34 (D _b ²			
		Db = Design di	ischarge per metre width		2.64 cum/sec/m
		K _{sf} = Silt factor	r		2.05
		d _{sf} =			2.02
	Maximum scour dept	h, as per IRC:78	3-2000, Clause 703.3		
		for Pier	2 d _{sf}		4.03 m
		for Abutment	1.27 d _{sf}		2.56 m
0	Vertical Clearance				
8					
õ	Vertical clearance for	opening of high	level bridge, from the lowest p	point	
ö			level bridge, from the lowest p Clause-106.2.1,Page-16)	point	0.9 m

9 Deck level

HFL at existing bridge site inculding afflux	14.953 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.600 *m
Depth of super structure including camber	0.400 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	16.009 m
Deck level of the existing bridge	15.878 m
Minimum deck level proposed	16.009 m

* Min. vertical clearance has been kept as 0.6 m as Discharge is just exceeding 30.0 cum/sec.

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour d Maximum scour le	epth			32.53 cum/sec 14.953 m 13.467 m 4.03 m 10.922 m
Curtain wall shall be provided b Bed level Scour depth below bed	pelow maximum s	scour level		13.467 m 2.55 m
Minimum depth of curtan wall a	as per IRC:89-199	97	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	3.5 m 4.0 m
Rigid apron as per IRC:89-199	7		u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 5.09 5.09	Provided 5.5 m 6.0 m

CHAPTER-5

BRIDGE AT CH:6/050

5. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

 Name of the Nala :
 Kala Polo

 Road No.:
 S.H - 9

 Km :
 Km 6.050

This bridge is across the irrigation canal. Hence there is no need of hydraulic calculations. This bridge has been retained.

CHAPTER-6

BRIDGE AT CH:9/200

6. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1 General details

Name of the Nala:	Kundi Polo - 1
Road No.:	S.H - 9
G.T S No :	73K/4
Nearest Village :	-
RD :	Km.9.200
Latitude	21 ⁰ 2' 00"
Longitude	86 ⁰ 31' 30"
Sub-Zone	3(d)

-		
2	Discharge by Manning's Formula	
	HFL at proposed bridge site	10.294 m
	Cross-section of the stream at different locations are as follows	
	Discharge by Manning's Formula at U/S location	
	HFL at proposed bridge site	10.294 m
	Cross-section of the stream at different locations are as follows	
	Cross-sectional area of flow	23.20 sqm
	Width of flow	21.00 m
	Wetted perimeter perpendicular to direction of flow	21.19 m
	Hydraulic mean radius R = A/P	1.09 m
	Longitudinal slope as calculated	0.0019 m per m
	Velocity by Manning's formula	
	$V = 1/n R^{2/3} S^{1/2}$ (refer SP-13, page 17)	
	For sluugish type bed (Table 5.1)	
	n =	0.06
	Velocity V =	0.772 m/s
	Discharge $Q = A^*V$	17.90 cum/s
	Discharge by Manning's Formula at existing location	
	Cross-sectional area of flow	15.21 sqm
	Width of flow	18.00 m

Wetted perimeter perpendicular to direction of flow	18.07 m
Hydraulic mean radius $R = A/P$	0.84 m
Longitudinal slope as calculated	0.0069 m per m

Velocity by Manning's formula

0.06 1.234 m/s 18.78 cum/s

$V = 1/n R^{2/3} S^{1/2}$	(refer SP-13, page 17)
For sluugish type bee	d (Table 5.1)
n =	
Velocity V =	
Discharge Q = A*V	

Discharge by Manning's Formula at D/S location

Cross-sectional area of flow	30.90 sqm
Width of flow	24.00 m
Wetted perimeter perpendicular to direction of flow	24.14 m
Hydraulic mean radius R = A/P	1.28 m
Longitudinal slope as calculated	0.0021 m per m

Velocity by Manning's formula

$V = 1/n R^{2/3} S^{1/2}$	(refer SP-13, page 17)	
For sluugish type bed	(Table 5.1)	
n =		0.06
Velocity V =		0.901 m/s
Discharge Q = A*V		27.83 cum/s

The hydrological calculations has been done at three sections I.e. at upstream side,

downstream side and near existing bridge location

By comparision of upstream and downstream side and Existing bridge location.

The design discharge may be taken as **18.78 cum/s**

3 Discharge by Dicken's Formula

Discharge as per Dicken's form	ula (Refer SP-13, page 7)	
Q = CN	1 ^{3/4}	
C = 14	19 where annual rainfall is more than 120 cm	
= 11-	14 where annual rainfall is 60-120 cm	
= 22	in western Ghats	
C adop	ted (Since Rain fall is more than 120 cm)	19
M = Ca	tchment area	1.075 sqkm
Q =		20.06 cum/s

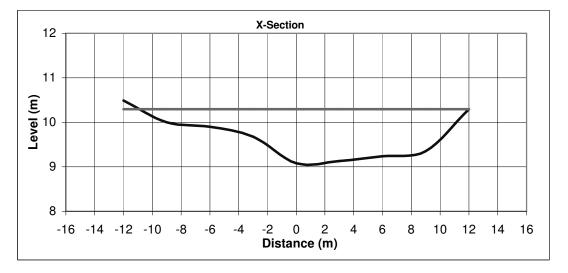
4 Discharge by Rational Formula

Catchment area	1.075 sqkm	107.50 hectares
Length of path from toposheet (L)		0.880 km
Difference in levels from toposheet (H)		0.785 m

	(Ref: Index map)			
	Maximum rain fall (F)	(Ref.SU	G of Nanojora River)	216.05 mm
	Duaration of storm (T)			5 hrs
	One hour rainfall (Io)		T)*(T+1)/(1+1)	129.63 mm/hr
	Time of concentration	(SP-13, page 12)	$tc = (0.87*L^3/H)^{0.385}$	0.90 hrs.
	Critical rainfall intensit	$v lc = lo^{*}(2/(1+tc))$		136.63 mm/hr
	Discharge Q = 0.028 *	P*f* A* Ic		
	P = (for lo	am, lightly cultivated o	or covered)	0.400
	f =			1.00
	A =			107.50 Hectares
	lc =			13.663 cm/hr
	Q =			16.450 cum/sec
5	Design Discharge	(Refer SP-13, page 2	21)	
	Discharge by Manning	's Formula		18.78 cum/sec
	Discharge by Dicken's	Formula		20.06 cum/sec
	Discharge by Rational	Formula		16.45 cum/sec
	Maximum discharge			20.06 cum/sec
	Next maximum discha	Irge		16.45 cum/sec
	The difference is within	n 50% of the next max	imum discharge	
	Hence design discha	irge		20.06 cum/sec
6	Water Way			
	Regime width		$W = 4.8Q^{1/2}$	21.50 m
		104.3 or SP-13, page 2	23)	
	Provide	Clear span		3 m
		No. of spans		3 no.
		Total waterway prov	ided L	9.00 m
7	Scour depth			
	C	charge, as per IRC:78-	-2000, cl 703.1.1	30%
	Increased design discl	-		26.08 cum/sec
	Mean depth of scour, a	as per IRC:78-2000, cl $d_{sf} = 1.34 (D_b^2/K_{sf})^{1/3}$		
		Db = Design dischar	ge per metre width	2.90 cum/sec/m
		K_{sf} = Silt factor		1.0 (Assumed)
	Mean depth of scou	$f, d_{sf} =$		2.72 m
	Maximum scour depth	, as per IRC:78-2000,	cl 703.3	

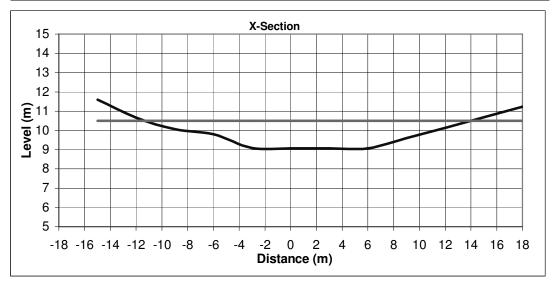
Maximum scour depth, as per IRC:78-2000, cl 703.3

		for Pier for Abutment	2 d _{sf} 1.27 d _{sf}	5.45 m 3.46 m
8	Deck level			
	HFL at proposed bridge site includi	ng afflux		10.294 m
	Minimum vertical clearance (Table	12.1 of SP-13)		0.600 m
	Depth of super structure			0.450 m
	Wearing coat			0.056 m
	Minimum deck level required as pe	r hydraulic con	ditions	11.400 m
	Deck level of the existing bridge			11.769 m
	Minimum deck level proposed			11.769 m


As per the proposed allignment, the formation level of bridge has been kept as 11.9 m

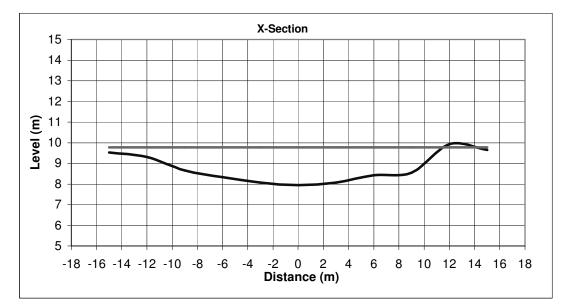
Cross-sectional area of nallah at proposed bridge site is as follows:

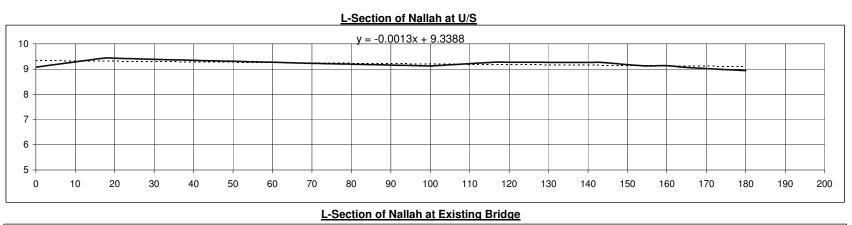
HFL at this location

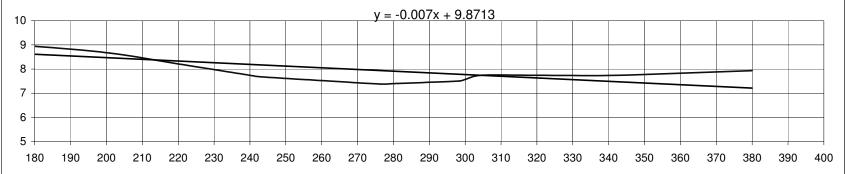

```
10.294 m
```

Distance	Level (m)	HFL (m)	Depth (m)	Av depth	Area	Perimeter	Top width
(m)				(m)	(sqm)	(m)	of flow
							(m)
-12	10.486	10.294					
-9	9.998	10.294	0.296				
-6	9.899	10.294	0.395	0.346	1.037	3.002	3.000
-3	9.675	10.294	0.619	0.507	1.521	3.008	3.000
0	9.079	10.294	1.215	0.917	2.751	3.059	3.000
3	9.129	10.294	1.165	1.190	3.570	3.000	3.000
6	9.236	10.294	1.058	1.112	3.335	3.002	3.000
9	9.352	10.294	0.942	1.000	3.000	3.002	3.000
12	10.298	10.294					
Total					15.21	18.07	18.00

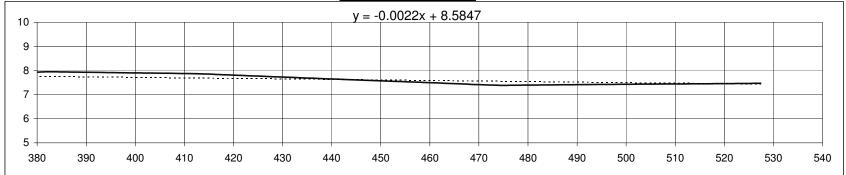
Cross-sectional area of nallah at u/s of the proposed bridge is as follows:			
Distance from proposed bridge	110 m		
Longitudinal slope u/s side	0.0019		
HFL at this location	10.503 m		


Distance	Level (m)	HFL (m)	Depth (m)	Av depth	Area	Perimeter	Top width
(m)				(m)	(sqm)	(m)	of flow
							(m)
-15	11.598	10.503					
-12	10.669	10.503					
-9	10.073	10.503	0.430				
-6	9.801	10.503	0.702	0.566	1.698	3.012	3.000
-3	9.08	10.503	1.423	1.063	3.188	3.085	3.000
0	9.074	10.503	1.429	1.426	4.278	3.000	3.000
3	9.063	10.503	1.440	1.435	4.304	3.000	3.000
6	9.063	10.503	1.440	1.440	4.320	3.000	3.000
9	9.603	10.503	0.900	1.170	3.510	3.048	3.000
12	10.135	10.503	0.368	0.634	1.902	3.047	3.000
15	10.685	10.503					
18	11.235	10.503					
Total					23.20	21.19	21.00




Cross-sectional area of nallah at d/s of proposed bridge is as follows:

Distance from proposed bridge	250 m
Longitudinal slope d/s side	0.0021
HFL at this location	9.769 m


Distance	Level (m)	HFL (m)	Depth (m)	Av depth	Area	Perimeter	Top width
(m)				(m)	(sqm)	(m)	of flow
							(m)
-15	9.521	9.769	0.248				
-12	9.307	9.769	0.462	0.355	1.065	3.008	3.000
-9	8.657	9.769	1.112	0.787	2.361	3.070	3.000
-6	8.331	9.769	1.438	1.275	3.825	3.018	3.000
-3	8.069	9.769	1.700	1.569	4.707	3.011	3.000
0	7.949	9.769	1.820	1.760	5.280	3.002	3.000
3	8.069	9.769	1.700	1.760	5.280	3.002	3.000
6	8.431	9.769	1.338	1.519	4.557	3.022	3.000
9	8.557	9.769	1.212	1.275	3.825	3.003	3.000
12	9.923	9.769					
15	9.653	9.769	0.116				
Total					30.90	24.14	24.00

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour dep Maximum scour leve				20.06 cum/sec 10.294 m 9.059 m 5.45 m 4.847 m
Curtain wall shall be provided bel Bed level Scour depth below bed	ow maximum	scour level		9.059 m 4.21 m
Minimum depth of curtan wall as	per IRC:89-1	997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	5.0 m 5.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 8.42 8.42	Provided 8.5 m 8.5 m

CHAPTER-7

BRIDGE AT CH:9/300

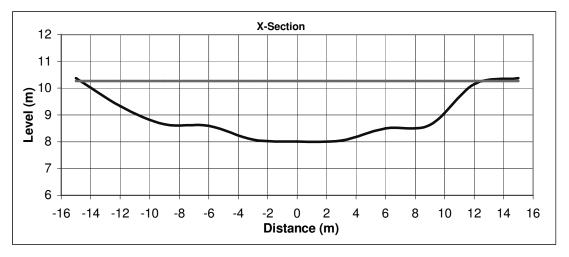
Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

7. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

	Osmanal dataila			
1	General details Name of the Nala :	Kundi Dala	_	
	Road No.:	Kundi Polo S.H - 9	5	
	G.T S No :	3.п-9 73К/4		
		/3N/4		
	Nearest Village :	-		
	RD :	Km.9.300 21 ⁰ 2' 00"		
	Latitude	21 2 00 86 ⁰ 32' 00'	"	
	Longitude			
	Sub-Zone	3(d)		
2	Discharge by Mannii	ng's Formul	a	
	HFL at proposed bridg	ge site		10.270 m
	Cross-socian of the	stroom at a	different locations are as follows	
	Discharge by Manni			
	Cross-sectional area	-		30.36 sqm
	Width of flow			27.00 m
	Wetted perimeter per	oendicular to	direction of flow	27.37 m
	Hydraulic mean radius			1.11 m
	Longitudinal slope as			0.0086 m per m
	Velocity by Manning's			
	V = 1/n R		(refer SP-13, page 17)	
		ish type bed		
	n =		(14610-0.1)	0.07
	Velocity \	/ =		1.419 m/s
	Discharge Q = A*V	• —		43.08 cum/s
	Discharge by Mannii	ng's Formul	a at existing location	
	Cross-sectional area	of flow		41.73 sqm
	Width of flow			24.00 m
	Wetted perimeter per	pendicular to	direction of flow	24.52 m
	Hydraulic mean radius	s R = A/P		1.70 m
	Longitudinal slope as	calculated		0.0040 m per m
	Velocity by Manning's			
	V = 1/n R	8 ^{2/3} S ^{1/2}	(refer SP-13, page 17)	
	For sluug	jish type bed	(Table 5.1)	
	n =			0.07
	Velocity V	/ =		1.288 m/s
	Discharge Q = A*V			53.74 cum/s
	Discharge by Mannii	ng's Formul	a at D/S location	
	Cross-sectional area	-		44.23 sqm
	Width of flow			24.00 m
	Wetted perimeter per	pendicular to	direction of flow	24.10 m
	Pointerer point			

	Hydraulic mean radius R = A/F	0	1.84 m
	Longitudinal slope as calculate	d	0.0033 m per m
	Velocity by Manning's formula		
	$V = 1/n R^{2/3} S^{1/2}$	(refer SP-13, page 17)	
	For sluugish type	bed (Table 5.1)	
	n =		0.07
	Velocity V =		1.230 m/s
	Discharge Q = A*V		54.41 cum/s
	The hydrological calculations h	has been done at three sections I.e. at upstream side,	
	downstream side and near exis	sting bridge location	
	By comparision of upstream an	nd downstream side and Existing bridge location.	
	The design discharge may be	taken as 53.74 cum/s	
3	Discharge by Dicken's Form	ula	
	Discharge as per Dicken's form Q = CI		
	C = 14	-19 where annual rainfall is more than 120 cm	
	= 11	-14 where annual rainfall is 60-120 cm	
	= 22	in western Ghats	
	C adop	oted (Since Rainfall is more than 120 cm)	19
	M = Ca	atchment area	3.200 sqkm
	Q =		45.46 cum/s
5	Discharge by Rational Form	ula	
	Catchment area	3.200 sqkm	320.00 hectares
	Length of path from toposheet	(L)	1.800 km
	Difference in levels from topos		1.95 m
	(Ref: Index map)		
	Maximum rain fall (F)	(Ref.SUG of Nanojora River)	216.05 mm
	Duaration of storm (T)		5 hrs
	One hour rainfall (lo)	$Io = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr
	Time of concentration (SP-13,	page 12) $tc = (0.87^*L^3/H)^{0.385}$	1.45 hrs.
	Critical rainfall intensity Ic = Io	*(2/(1+tc)	106.03 mm/hr
	Discharge Q = 0.028 * P*f* A*	lc	
	P = (for loam, ligh	tly cultivated or covered)	0.400
	f =		1.00
	A =		320.00 Hectares
	Ic =		10.603 cm/hr
	Q=		38.002 cum/sec
6	Design Discharge	(Refer SP-13, page 21)	
•	Discharge by Manning's Formu	· · · · · ·	53.74 cum/sec
	Discharge by Dicken's Formula		45.46 cum/sec
	Discharge by Rational Formula		38.00 cum/sec
	Maximum discharge		53.74 cum/sec
	Next maximum discharge		45.46 cum/sec
	The difference is within 50% of	the next maximum discharge	
	Hence design discharge		53.74 cum/sec

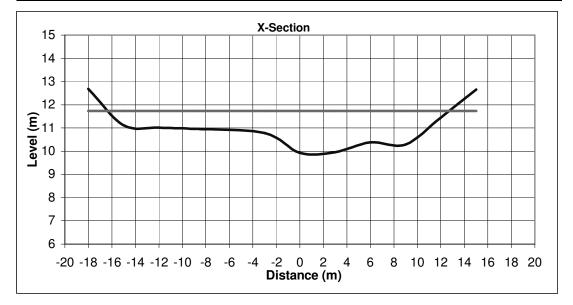
7	Water Way			
	Regime width		$W = 4.8Q^{1/2}$	35.19 m
	(Refer IRC:5-1998, cl	104.3 or SP-13, page 23)		
	Provide	Clear span		7 m
		No. of spans		3 no.
		Total waterway provided L		21.00 m
8	Scour depth			
	Increase in design dis	charge, as per IRC:78-2000, cl 7	03.1.1	30%
	Increased design disc	harge		69.86 cum/sec
	Mean depth of scour,	as per IRC:78-2000, cl 703.2 d _{sf} = 1.34 (D _b ² /K _{sf}) ^{1/3}		
		Db = Design discharge per me	tre width	1.99 cum/sec/m
		K _{sf} = Silt factor		1.0 (Assumed)
	Mean depth of scou	r, d _{sf} =		2.12 m
	Maximum scour depth	n, as per IRC:78-2000, cl 703.3		
		for Pier		4.23 m
		for Abutment		2.69 m
9	Deck level			
	HFL at proposed bridg	ge site including afflux		10.270 m
	Minimum vertical clea	rance (Table 12.1 of SP-13)		0.900 m
	Depth of super structu	ire		0.550 m
	Wearing coat			0.056 m
	Minimum deck level re	equired as per hydraulic condition	IS	11.776 m
	Deck level of the exist	ing bridge		11.900 m
	Minimum deck level p	roposed		11.900 m


Keeping in view of the hydraulic performance of the existing bridge, it is recommended to retain the existing bridge, no raising required.

Cross-sectional area of nallah at proposed bridge site is as follows:

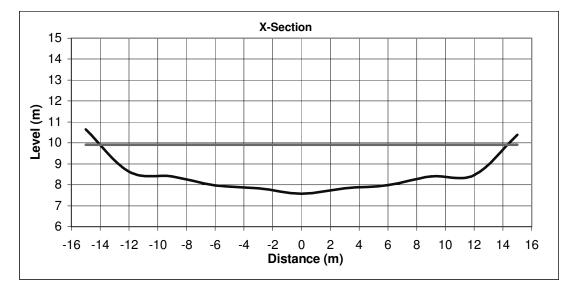
HFL at this location

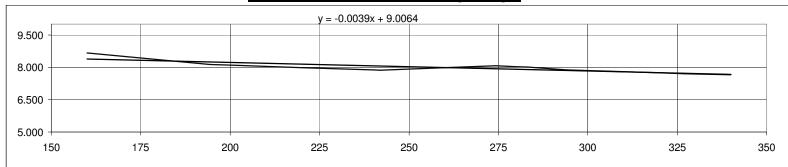
```
10.270 m
```


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)
-15	10.369	10.270					
-12	9.329	10.270	0.941				
-9	8.652	10.270	1.618	1.280	3.839	3.075	3.000
-6	8.595	10.270	1.675	1.647	4.940	3.001	3.000
-3	8.079	10.270	2.191	1.933	5.799	3.044	3.000
0	8.004	10.270	2.266	2.229	6.686	3.001	3.000
3	8.049	10.270	2.221	2.244	6.731	3.000	3.000
6	8.499	10.270	1.771	1.996	5.988	3.034	3.000
9	8.632	10.270	1.638	1.705	5.114	3.003	3.000
12	10.153	10.270	0.117	0.878	2.633	3.364	3.000
15	10.369	10.270					
Total					41.73	24.52	24.00

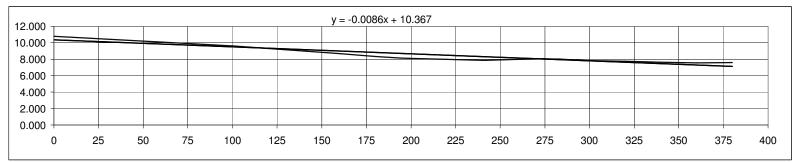
Cross-sectional area of nallah at u/s of the proposed bridge is as follows:

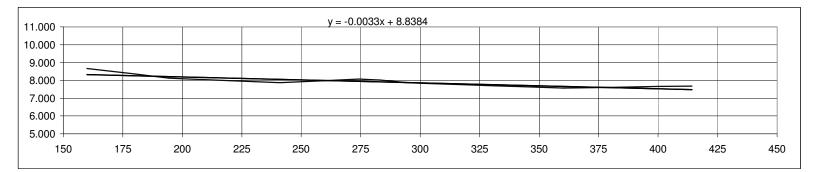
Distance from proposed bridge	170 m
Longitudinal slope u/s side	0.0086
HFL at this location	11.732 m


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)
-18	12.691	11.732					
-15	11.108	11.732	0.624				
-12	11.014	11.732	0.718	0.671	2.013	3.001	3.000
-9	10.968	11.732	0.764	0.741	2.223	3.000	3.000
-3	10.785	11.732	0.947	0.855	5.133	6.003	6.000
0	9.93	11.732	1.802	1.375	4.124	3.119	3.000
3	9.95	11.732	1.782	1.792	5.376	3.000	3.000
6	10.382	11.732	1.350	1.566	4.698	3.031	3.000
9	10.285	11.732	1.447	1.399	4.196	3.002	3.000
12	11.45	11.732	0.282	0.865	2.594	3.218	3.000
15	12.656	11.732					
Total					30.36	27.37	27.00


Cross-sectional area of nallah at d/s of proposed bridge is as follows:

Distance from proposed bridge	110 m
Longitudinal slope d/s side	0.0033
HFL at this location	9.907 m


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)
-15	10.643	9.907					
-12	8.625	9.907	1.282				
-9	8.392	9.907	1.515	1.399	4.196	3.009	3.000
-6	7.978	9.907	1.929	1.722	5.166	3.028	3.000
-3	7.826	9.907	2.081	2.005	6.015	3.004	3.000
0	7.573	9.907	2.334	2.208	6.623	3.011	3.000
3	7.832	9.907	2.075	2.205	6.614	3.011	3.000
6	7.979	9.907	1.928	2.002	6.005	3.004	3.000
9	8.393	9.907	1.514	1.721	5.163	3.028	3.000
12	8.456	9.907	1.451	1.483	4.448	3.001	3.000
15	10.383	9.907					
Total					44.23	24.10	24.00


L-Section of Nallah at Existing Bridge

L-Section of Nallah at U/S

L-Section of Nallah at D/S

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour de Maximum scour lev				53.74 cum/sec 10.270 m 8.064 m 4.23 m 6.037 m
Curtain wall shall be provided be Bed level Scour depth below bed	low maximum s	scour level		8.064 m 2.03 m
Minimum depth of curtan wall as	per IRC:89-19	97	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.0 m 2.5 m
Rigid apron as per IRC:89-1997		Upto the end o	of splayed wing w	alls on both sides.
Formation level Width of bridge Camber Road top level at e Natural bed level Floor level Height of retained e Side slope, 1 V : H Length of rigid apro	earth at high end			11.9 m 8.3 m 2.50% 11.796 m 8.064 m 7.764 m 4.03 m 1.00 m 2.0 6.1 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 4.05 4.05	Provided 3.0 m 6.0 m

CHAPTER-8

BRIDGE AT CH:13/600

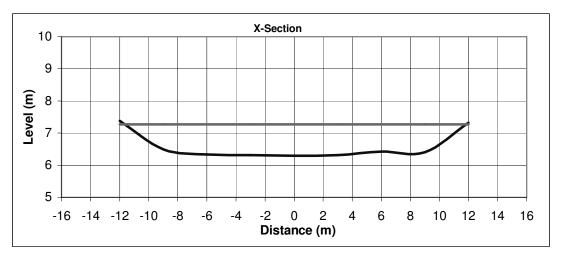
Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

8. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

4	General details		
1	Name of the Nala :	Nandapur Polo	
	Road No.:	S.H - 9	
	G.T S No :	73K/4	
	Nearest Village :	-	
	RD :	Km.13.600	
	Latitude	21 ⁰ 1' 00"	
	Longitude	86 ⁰ 32' 00"	
	Sub-Zone	3(d)	
	300-201e	3(0)	
2	Discharge by Mannin	g's Formula	
	HFL at proposed bridg	e site	7.269 m
	Cross-section of the	stream at different locations are as follows	
	Discharge by Mannin	g's Formula at U/S location	
	Cross-sectional area o	f flow	15.20 sqm
	Width of flow		18.00 m
	Wetted perimeter perp	endicular to direction of flow	18.13 m
	Hydraulic mean radius	R = A/P	0.84 m
	Longitudinal slope as c	alculated	0.0021 m per m
	Velocity by Manning's	formula	
	V = 1/n R ²	^{2/3} S ^{1/2} (refer SP-13, page 17)	
	For sluugi	sh type bed (Table 5.1)	
	n =		0.06
	Velocity V	=	0.679 m/s
	Discharge Q = A*V		10.32 cum/s
		g's Formula at existing location	
	Cross-sectional area o	f flow	16.47 sqm
	Width of flow		18.00 m
		endicular to direction of flow	18.01 m
	Hydraulic mean radius		0.91 m
	Longitudinal slope as c		0.0021 m per m
	Velocity by Manning's		
	V = 1/n R ²	^{2/3} S ^{1/2} (refer SP-13, page 17)	
	For sluugi	sh type bed (Table 5.1)	
	n =		0.06
	Velocity V	=	0.720 m/s
	Discharge Q = A*V		11.85 cum/s
		a's Formula at D/S location	
		g's Formula at D/S location	00.10
	Cross-sectional area o	I HOW	20.19 sqm
	Width of flow	and in the stime of flow	21.00 m
		endicular to direction of flow	21.00 m
	Hydraulic mean radius		0.96 m
	Longitudinal slope as c	alculated	0.0015 m per m

	Velocity by Manning's formula				
	$V = 1/n R^2$	10	efer SP-13, p	age 17)	
	For sluugi	sh type bed (Ta		0 /	
	n =		,		0.06
	Velocity V	=			0.629 m/s
	Discharge Q = A*V				12.70 cum/s
	The hydrological calcul	ations has been	done at three	e sections I.e. at upstre	am side,
	downstream side and r			-	
	By comparision of upst		-		tion.
	The design discharge r			11.85 cum/s	
3	Discharge by Dicken'	s Formula			
	Discharge as per Dicke	en's formula	(refer SP-13, page 7)	
		$Q = CM^{3/4}$			
		C = 14-19 whe	ere annual rair	nfall is more than 120 c	m
		= 11-14 whe	re annual rair	Ifall is 60-120 cm	
		= 22 in west	ern Ghats		
				is more than 120 cm)	19
		M = Catchmer	nt area		2.500 sqkm
		Q =			37.78 cum/s
		/ -			
4	Design Discharge		Refer SP-13, j	bage 21)	11.05 ours/aga
	Discharge by Manning				11.85 cum/sec
	Discharge by Dicken's	Formula			37.78 cum/sec
	Maximum discharge Next maximum dischar				37.78 cum/sec 11.85 cum/sec
	The difference is beyor	0	ovt movimum	dischargo	
	Hence design dischar			uischarge	17.77 cum/sec
	gg	9-			
5	Water Way				
	Regime width			$W = 4.8Q^{1/2}$	² 20.24 m
	(Refer IRC:5-1998, cl	104.3 or SP-13,	page 23)		
	Provide	Clear span			3 m
		No. of spans			3 no.
		Total waterway	/ provided L		9.00 m
6	Scour depth				
	Increase in design disc	harge, as per IF	RC:78-2000, o	el 703.1.1	30%
	Increased design disch	large			23.11 cum/sec
	Mean depth of scour, a	as per IRC:78-20 $d_{sf} = 1.34 (D_b^2)$			
		Db = Design d K _{sf} = Silt facto		metre width	2.57 cum/sec/m
	Silt factor has been ca			lected from site	
		Depth	Silt factor		
		3	0.624	1.872	
		6	1.259	7.554	
	Weighted average	9		9.426	0.955
	0	-		-	

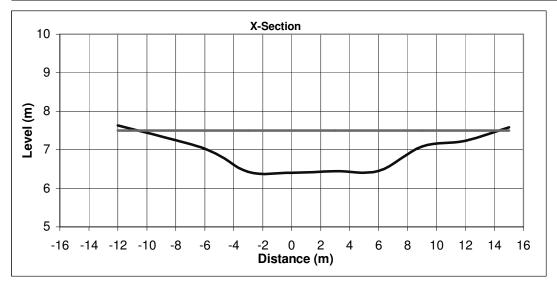
	Mean depth of scour, d_{sf} =	2.55 m
	Maximum scour depth, as per IRC:78-2000, cl 703.3	
	for Pier	5.10 m
	for Abutment	3.24 m
7	Deck level	
	HFL at proposed bridge site including afflux	7.269 m
	Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
	Depth of super structure	0.450 m
	Wearing coat	0.056 m
	Minimum deck level required as per hydraulic conditions	8.375 m
	Deck level of the existing bridge	8.344 m
	Minimum deck level proposed	8.375 m


As per proposed alignment the proposed level has been kept as 8.7 $\ensuremath{\mathsf{m}}$

Cross-sectional area of nallah at proposed bridge site is as follows:

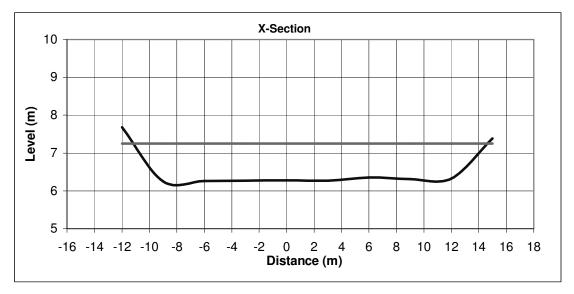
HFL at this location

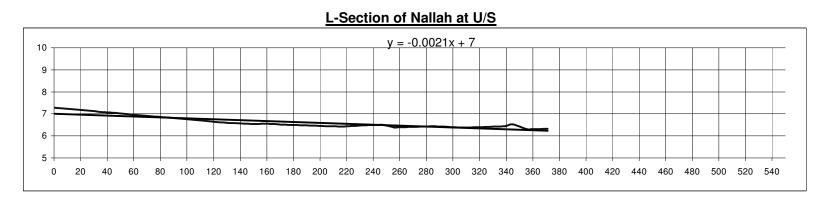
```
7.269 m
```


Distance	Level (m)	HFL (m)	Depth (m)	Av depth	Area	Perimeter	Top width of
		· · · E (····)	Doptin (iii)				
(m)				(m)	(sqm)	(m)	flow (m)
-12	7.379	7.269					
-9	6.493	7.269	0.776				
-6	6.333	7.269	0.936	0.856	2.568	3.004	3.000
-3	6.313	7.269	0.956	0.946	2.838	3.000	3.000
0	6.293	7.269	0.976	0.966	2.898	3.000	3.000
3	6.315	7.269	0.954	0.965	2.895	3.000	3.000
6	6.423	7.269	0.846	0.900	2.700	3.002	3.000
9	6.403	7.269	0.866	0.856	2.568	3.000	3.000
12	7.325	7.269					
Total					16.47	18.01	18.00

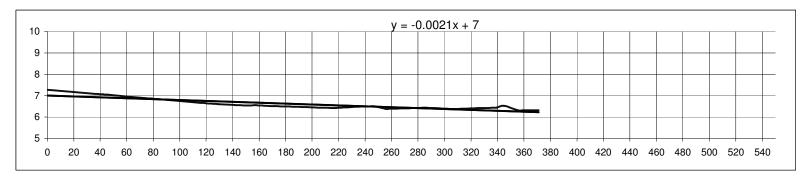
Cross-sectional area of nallah at u/s of the proposed bridge is as follows:

Distance from proposed bridge	110 m
Longitudinal slope u/s side	0.0021
HFL at this location	7.500 m

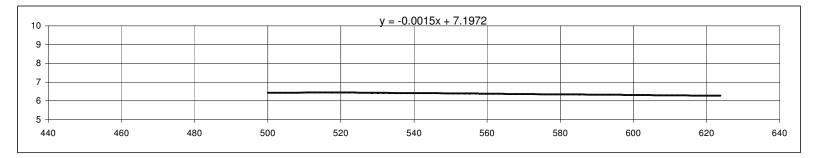

Distance	Level (m)	HFL (m)	Depth (m)	Av depth	Area	Perimeter	Top width of
(m)				(m)	(sqm)	(m)	flow (m)
-12	7.635	7.500					
-6	7.023	7.500	0.477				
-3	6.427	7.500	1.073	0.775	2.325	3.059	3.000
0	6.4	7.500	1.100	1.087	3.260	3.000	3.000
3	6.4421	7.500	1.058	1.079	3.237	3.000	3.000
6	6.453	7.500	1.047	1.052	3.157	3.000	3.000
9	7.083	7.500	0.417	0.732	2.196	3.065	3.000
12	7.234	7.500	0.266	0.342	1.025	3.004	3.000
15	7.584	7.500					
Total					15.20	18.13	18.00



Cross-sectional area of nallah at d/s of proposed bridge is as follows:


Distance from proposed bridge	110 m
Longitudinal slope d/s side	0.00015
HFL at this location	7.253 m

Distance	Level (m)	HFL (m)	Depth (m)	Av depth	Area	Perimeter	Top width of
(m)				(m)	(sqm)	(m)	flow (m)
-12	7.683	7.253					
-9	6.253	7.253	1.000				
-6	6.262	7.253	0.991	0.995	2.985	3.000	3.000
-3	6.271	7.253	0.982	0.986	2.958	3.000	3.000
0	6.275	7.253	0.978	0.980	2.939	3.000	3.000
3	6.273	7.253	0.980	0.979	2.936	3.000	3.000
6	6.353	7.253	0.900	0.940	2.819	3.001	3.000
9	6.313	7.253	0.940	0.920	2.759	3.000	3.000
12	6.325	7.253	0.928	0.934	2.801	3.000	3.000
15	7.384	7.253					
Total					20.19	21.00	21.00



L-Section of Nallah at Existing Bridge

L-Section of Nallah at D/S

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour dept Maximum scour level				17.77 cum/sec 7.269 m 6.313 m 5.10 m 2.166 m
Curtain wall shall be provided belo Bed level Scour depth below bed	w maximı	um scour level		6.313 m 4.15 m
Minimum depth of curtan wall as p	er IRC:89	-1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	5.0 m 5.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 8.29 8.29	Provided 8.5 m 8.5 m

CHAPTER-9

BRIDGE AT CH:28/100

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

9. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala:	Luharbada			
	Road No.:	S.H - 9			
	G.T S No :	73K/4			
	Nearest Village :	Luharbada			
	RD :	Km.28.100			
	Latitude	20 ⁰ 55' 00"			
	Longitude	86 ⁰ 41' 00"			
	Sub-Zone	3(d)			
2	Discharge by Dicker	n's Formula			
	Discharge as per Dicl	ken's formula	(refer SP-13, page	ə 7)	
		$Q = CM^{3/4}$			
		C = 14-19 wh	ere annual rainfall is more than 120 o	cm	
		= 11-14 wh	ere annual rainfall is 60-120 cm		
		= 22 in wes	tern Ghats		
		C adopted	(Since Rain fall is more than 120 c	m)	19
		M = Catchme	nt area		0.780 sqkm
		Q =			15.77 cum/s
3	Discharge by Ratior	nal Formula			
	Catchment area		0.780 sqkr	m	78.00 hectares
	Length of path from to	oposheet (L)			1.500 km
	Difference in levels fro	om toposheet (H)		2 m
	(Ref: Index map)				
	Maximum rain fall (F)		(Ref.SUG of Nanojora River)		216.05 mm
	Duaration of storm (T)			5 hrs
	One hour rainfall (lo)		$Io = (F/T)^{*}(T+1)/(1+1)$	385	129.63 mm/hr
	Time of concentration			000	1.16 hrs.
	Critical rainfall intensi		-tc)		120.07 mm/hr
	Discharge Q = 0.028				
	P = (for lo	am, lightly culti	vated or covered)		0.400
	f =				1.00
	A =				78.00 Hectares
	lc =				12.007 cm/hr
	Q=				10.489 cum/sec
	Here,				

t_c= Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 I_0 = One hour rainfall in cm.

I_c= Critical intensity of rainfall in cm per hour

P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)

- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge	(Refer I.R.C.SP-13, page 21		
4	Discharge by Dicken's Formula	(Refer I.R.C.OF - 10, page 21)	15.77 cum/sec
	Discharge by Rational Formula			10.49 cum/sec
	Maximum discharge			15.77 cum/sec
	Next maximum discharge			10.49 cum/sec 15.73 cum/sec
	Hence design discharge			15.75 cum/sec
5	Linear Water Way			
J	Regime width		$W = 4.8 * Q^{1/2}$	19.04 m
	•		W = 4.0 Q	13.04 m
	(Refer IRC:5-1998, Clause 104.3 or \$	SF-13, Page 23)		
6	Span arrangement			
	In proposed span arrangement, doub	ble cell of 6.0 m has been prop	osed	12.00 m
	with bed protection.	······································		
	·····			
7	Scour depth			
	Increase in design discharge, as per	IRC:78-2000,Clause 703.1.1		30%
	Increased design discharge			20.45 cum/sec
	Mean depth of scour, as per IRC:78-			
	d _{sf} = 1.34 (D _b ²	² /K _{sf}) ^{1/3}		
	Db = Design c	discharge per metre width		1.70 cum/sec/m
	K _{sf} = Silt facto	or		1.00 (Assumed)
	d _{sf} =			1.91
	Maximum scour depth, as per IRC:78	8-2000, Clause 703.3		
	for pier	2 d _{sf}		3.82 m
	for Abutment	1.27 d _{sf}		2.43 m
8	Vertical Clearance			

Vertical clearance for opening of high level bridge, from the lowest point 0f deck structure (Ref.I.R.C.-5-1998,Clause-106.2.1,Page-16) 0.6 m

9 Deck level

HFL at existing bridge site including afflux	6.460 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
Depth of super structure including camber	0.680 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	7.796 m
Deck level of the existing bridge	7.235 m
Minimum deck level proposed	7.796 m

As per the proposed allignment, the formation level of bridge has been kept as 8.0m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour dep Maximum scour leve				15.73 cum/sec 6.460 m 4.050 m 3.82 m 2.636 m
Curtain wall shall be provided bel Bed level Scour depth below bed	ow maximum	scour level		4.05 m 1.41 m
Minimum depth of curtan wall as	per IRC:89-19	997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.0 m 2.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 2.83 2.83	Provided 3.0 m 6.0 m

CHAPTER-10

BRIDGE AT CH:28/800

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

10. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name o	f the Nala	:	Kalapahada	Ghusura

Road No.:	S.H - 9
G.T S No :	73K/4
Nearest Village :	Kalapahada Ghusura
RD :	Km.28.800
Latitude	20 ⁰ 55' 00"
Longitude	86 ⁰ 41' 30"
Sub-Zone	3(d)

2 Discharge by Dicken's Formula

Discharge as per Dick	en's formula Q = CM ^{3/4}		(Refer SP-13, page 7)	
	C = 14-19 when	re annual rainfall is	more than 120 cm	
= 11-14 where annual rainfal = 22 in western Ghats		e annual rainfall is	60-120 cm	
		ern Ghats		
	C adopted	(Since Rain fall is	s more than 120 cm)	19
M = Catchment area		t area		1.010 sqkm
	Q =			19.14 cum/s

3 Discharge by Rational Formula

Catchment area	1.0	010 sqkm	101.00 hectares
Length of path from toposheet (L)			0.850 km
Difference in levels from toposheet (H)			0.75 m
(Ref: Index map)			
Maximum rain fall (F)	(Ref.SUG of Nanojora River)		216.05 mm
Duaration of storm (T)			5 hrs
One hour rainfall (lo)	$lo = (F/T)^{*}(T+1)/(1+1)$		129.63 mm/hr
Time of concentration (I.R.C. SP-13, P	age 12) tc = (0.87*L	. ³ /H) ^{0.385}	0.88 hrs.
Critical rainfall intensity $Ic = Io^{*}(2/(1+tc))$)		138.08 mm/hr
Discharge Q = 0.028 * P*f* A* Ic			
P = (for loam, lightly cultiva	ted or covered)		0.400
f =			1.00
A =			101.00 Hectares
lc =			13.808 cm/hr
Q =			15.620 cum/sec

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 I_0 = One hour rainfall in cm.

 I_c = Critical intensity of rainfall in cm per hour

P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)

- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge		(Refer I.R.C.SP-13, page 21)		
	Discharge by Dicken's	Formula			19.14 cum/sec
	Discharge by Rational	Formula			15.62 cum/sec
	Maximum discharge				19.14 cum/sec
	Next maximum discha	rge			15.62 cum/sec
	Hence design discha	rge			19.14 cum/sec
5	Linear Water Way			1/0	
	Regime width			$W = 4.8 * Q^{1/2}$	21.00 m
	(Refer IRC:5-1998, Cla	ause 104.3 or SF	P-13, Page 23)		
6	Shan arrangement				
0	Span arrangement				
	In proposed span arrangement, triple cell of 3.0 m has been proposed			9.00 m	
	with bed protection.				
-					
1	Scour depth				
	Increase in design discharge, as per IRC:78-2000,Clause 703.1.1			30%	
	Increased design discharge				24.89 cum/sec
	Mean depth of scour, a				
	Db = Design discharge per metre width				2.77 cum/sec/m
		K _{sf} = Silt factor	r		2.09
		d _{sf} =			2.06
	Maximum scour depth, as per IRC:78-2000, Clause 703.3				
		for Pier	2 d _{sf}		4.13 m
		for Abutment	1.27 d _{sf}		2.62 m
•					

8 Vertical Clearance

Vertical clearance for opening of high level bridge, from the lowest point	
0f deck structure (Ref.I.R.C5-1998, Clause-106.2.1, Page-16)	0.6 m

9 Deck level

HFL at existing bridge site including afflux	6.793 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
Depth of super structure including camber	0.450 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	7.899 m
Deck level of the existing bridge	5.993 m
Minimum deck level proposed	7.899 m

As per the proposed allignment, the formation level of bridge has been kept as 8.1 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour de _l Maximum scour lev				19.14 cum/sec 6.793 m 4.552 m 4.13 m 2.664 m
Curtain wall shall be provided be Bed level Scour depth below bed	ow maximum :	scour level		4.552 m 1.89 m
Minimum depth of curtan wall as	per IRC:89-19	97	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.5 m 3.0 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 3.78 3.78	Provided 4.0 m 6.0 m

CHAPTER-11

BRIDGE AT CH:30/050

11. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the N	lala :	Gadi Ghusura
---	---------------	--------	--------------

Road No.:	S.H - 9
G.T S No :	73K
Nearest Village :	Gadi Ghusura
RD :	Km.30.050
Latitude	20 ⁰ 55' 00"
Longitude	86 ⁰ 43' 00"
Sub-Zone	3(d)

2 Discharge by Dicken's Formula

Discharge as per Dicken's formu $\label{eq:Q} Q = CM^{3/4}$		
C = 14-19	where annual rainfall is more than 120 cm	
= 11-14	where annual rainfall is 60-120 cm	
= 22 in v	vestern Ghats	
C adopted	(Since Rain fall is more than 120 cm)	19
M = Catch	ment area	2.400 sqkm
Q =		36.64 cum/s

3 Discharge by Rational Formula

Catchment area	2	2.400 sqkm	240.00 hectares
Length of path from toposheet (L)			1.200 km
Difference in levels from toposheet (H)		1.5 m
(Ref: Index map)			
Maximum rain fall (F)	(Ref.SUG of Nanojora Rive	er)	216.05 mm
Duaration of storm (T)			5 hrs
One hour rainfall (lo)	$Io = (F/T)^{*}(T+1)/(1+1)$		129.63 mm/hr
Time of concentration (I.R.C. SP-13	, Page 12) tc = (0.87	7*L ³ /H) ^{0.385}	1.00 hrs.
Critical rainfall intensity Ic = Io*(2/(1-			129.57 mm/hr
Discharge Q = 0.028 * P*f* A* Ic			
P = (for loam, lightly cultiv	vated or covered)		0.400
f =			1.00
A =			240.00 Hectares
lc =			12.957 cm/hr
Q =			34.830 cum/sec

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

I_o= One hour rainfall in cm.

12.04 cum/sec

- I_c = Critical intensity of rainfall in cm per hour
- P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)
- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4 Design Discharge (Refer I.R.C.SP-13, page 21)

Discharge by Dicken's Formula	36.64 cum/sec
Discharge by Rational Formula	34.83 cum/sec
Maximum discharge	36.64 cum/sec
Next maximum discharge Two additional Structures has been provided I.e. series of 10 pipes of 1200 mm dia at two lo	34.83 cum/sec
The discharge taken by these two additional structures assuming velocity of 1 m/sec on cor	nservative side.
= 2 x 1.13 x 10 x 1 = 22.6 Cum/sec	

Remaining discharge = 34.64 - 22.6 = 12.04 cum/sec

Hence design discharge	

5 Linear Water Way

	Regime width			W=4.8*Q ^{1/2}	16.66 m
	(Refer IRC:5-1998, 0	Clause 104.3 or	SP-13, Page 23)		
6	Span arrangement				
	In proposed span arr	angement, triple	e cell of 3.0 m has been propose	ed	9.00 m
	with bed protection.				
7	Scour depth				
	Increase in design di	scharge, as per	IRC:78-2000,Clause 703.1.1		30%
	Increased design dis	charge			15.65 cum/sec
	Mean depth of scour	, as per IRC:78 d _{sf} = 1.34 (D _b			
		Db = Design d	discharge per metre width		1.74 cum/sec/m
		K _{sf} = Silt facto	or		1.00
		d _{sf} =			1.94
	Maximum scour dept	th, as per IRC:7	8-2000, Clause 703.3		
		for Pier	2 d _{sf}		3.88 m
		for Abutment	1.27 d _{sf}		2.46 m

0.6 m

8 Vertical Clearance

Vertical clearance for opening of high level bridge, from the lowest point	
0f deck structure (Ref.I.R.C5-1998, Clause-106.2.1, Page-16)	

9 Deck level

HFL at existing bridge site including afflux	6.599 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
Depth of super structure including camber	0.450 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	7.705 m
Deck level of the existing bridge	6.099 m
Minimum deck level proposed	7.705 m

As per the proposed allignment, the formation level of bridge has been kept as 8.2 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour dep Maximum scour leve				36.64 cum/sec 6.599 m 4.753 m 3.88 m 2.723 m
Curtain wall shall be provided belo Bed level Scour depth below bed	ow maximu	m scour level		4.753 m 2.03 m
Minimum depth of curtan wall as p	ber IRC:89-	1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	3.0 m 3.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 4.06 4.06	Provided 4.5 m 6.0 m

CHAPTER-12

BRIDGE AT CH:30/200

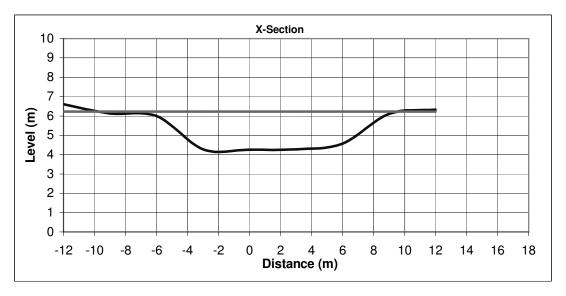
Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

12. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	General details					
-	Name of the Nala:	Kadanga (Canal Gadi Bridge			
	Road No.:	S.H - 9	5			
	G.T S No :	73K				
	Nearest Village :	Gadi				
	RD :	Km.30.20	0			
	Latitude	20 ⁰ 55' 00)"			
	Longitude	86 ⁰ 43' 30)"			
	Sub-Zone	3(d)				
2	Discharge by Mannir	ng's Formu	la			
	HFL at proposed bridg	ge site		6.226 m		
	Cross-section of the	stream at o	different locations are as follows			
	Discharge by Mannir	ng's Formul	la at U/S location			
	Cross-sectional area of	of flow		21.74 sqm		
	Width of flow			18.00 m		
	Wetted perimeter perp	pendicular to	o direction of flow	18.41 m		
	Hydraulic mean radius	s R = A/P		1.18 m		
	Longitudinal slope as	calculated		0.0012 m per m		
	Velocity by Manning's					
	V = 1/n R	^{2/3} S ^{1/2}	(refer SP-13, page 17)			
	For sluug	ish type bed	I (Table 5.1)			
	n =			0.06		
	Velocity V	/ =		0.645 m/s		
	Discharge Q = A*V			14.02 cum/s		
		-	la at existing location			
		Cross-sectional area of flow				
	Width of flow			18.00 m		
	Wetted perimeter perp	18.85 m				
	Hydraulic mean radius	1.25 m				
	Longitudinal slope as			0.0012 m per m		
	Velocity by Manning's					
	V = 1/n R		(refer SP-13, page 17)			
	For sluug	ish type bed	d (Table 5.1)			
	n =			0.06		
	Velocity V	/ =		0.671 m/s		
	Discharge Q = A*V			15.84 cum/s		
	Discharge by Mannir		la at D/S location			
	Cross-sectional area of	of flow		27.12 sqm		
	Width of flow	21.00 m				

	Wetted perimeter perpendicular to	direction of flow	21.43 m
	Hydraulic mean radius R = A/P		1.27 m
	Longitudinal slope as calculated		0.0014 m per m
	Velocity by Manning's formula		
	$V = 1/n R^{2/3} S^{1/2}$	(refer SP-13, page 17)	
	For sluugish type bed	(Table 5.1)	
	n =		0.06
	Velocity V =		0.730 m/s
	Discharge Q = A*V		19.79 cum/s
	The hydrological calculations has b	peen done at three sections I.e. at upstream side,	
	downstream side and near propose		
		ownstream side and Existing bridge location.	
	The design discharge may be take		
3	Discharge by Dicken's Formula		
Ŭ	Discharge as per Dicken's formula	(Refer SP-13, page 7)	
	$Q = CM^{3/4}$	(Heler OF 10, page 7)	
		where annual rainfall is more than 120 cm	
		vhere annual rainfall is 60-120 cm	
		estern Ghats	10
		(Since Rainfall is more than 120 cm)	19
	M = Catchr	nent area	0.700 sqkm
	Q =		14.54 cum/s
_			
4	Discharge by Rational Formula		
	Catchment area	0.700 sqkm	70.00 hectares
	Length of path from toposheet (L)		1.300 km
	Difference in levels from toposheet	(H)	1.5 m
	(Ref: Index map)		
	Maximum rain fall (F)	(Ref.SUG of Nanojora River)	216.05 mm
	Duaration of storm (T)		5 hrs
	One hour rainfall (Io)	$Io = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr
	Time of concentration (SP-13, page	$tc = (0.87^*L^3/H)^{0.385}$	1.10 hrs.
	Critical rainfall intensity Ic = Io*(2/(1+tc)	123.59 mm/hr
	Discharge Q = 0.028 * P*f* A* Ic		
	P = (for loam, lightly c	ultivated or covered)	0.400
	f =		1.00
	A =		70.00 Hectares
	lc =		12.359 cm/hr
	Q =		9.689 cum/sec
5	Design Discharge	(Refer SP-13, page 21)	
	Discharge by Manning's Formula		15.84 cum/sec
	Discharge by Dicken's Formula		14.54 cum/sec
	Discharge by Rational Formula		9.69 cum/sec
	Disonarge by Hational Formula		0.00 Cuil/360

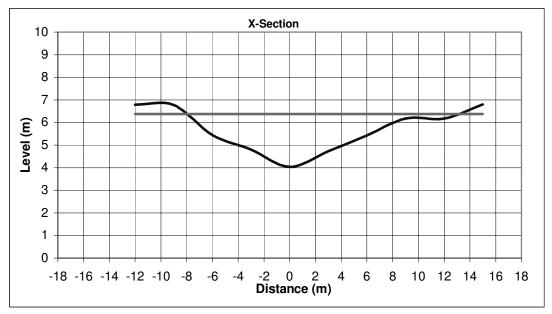
	Maximum discharge					15.84 cum/sec
	Next maximum discharge					14.54 cum/sec
	The difference is within 50)% of the nex	t maximum o	discharge		
	Hence design discharge	•				15.84 cum/sec
6	Water Way					
•	Regime width			v	$V = 4.8Q^{1/2}$	19.10 m
	(Refer IRC:5-1998, cl 104	.3 or SP-13.	page 23)			
		lear span	page _0)			6 m
		o. of spans				2 no.
		otal waterway	provided L			12.00 m
7	Scour depth					
	Increase in design discha	rge, as per IF	C:78-2000, (cl 703.1.1		30%
	Increased design discharg		,			20.59 cum/sec
	Mean depth of scour, as p	oer IRC:78-20				
		$_{\rm ff} = 1.34 \ ({\rm D_b}^2/$				
		b = Design di _{sf} = Silt factor		metre width		1.72 cum/sec/m
	Silt factor has been calcu	lated accordi	ng to data co	ollected from	site	
		Depth	Silt factor			
		3	0.362	1.086		
		6	0.945	5.670		
	Weighted average	9		6.756		1.332
	Mean depth of scour, d_s	_{sf} =				1.75 m
	Maximum scour depth, as	per IRC:78-2	2000, cl 703.	3		
		fo	r Pier			3.49 m
		fo	r Abutment			2.22 m
8	Deck level					
	HFL at proposed bridge s	ite including a	aflux			6.226 m
	Minimum vertical clearand	ce (Table 12.	1 of SP-13)			0.600 m
	Depth of super structure					0.500 m
	Wearing coat					0.056 m
	Minimum deck level requi	red as per hy	draulic condi	tions		7.382 m
	Deck level of the existing	bridge				7.680 m
	Minimum deck level propo	osed				7.680 m


Keeping in view of the hydraulic performance of the existing b Hence O.K to retain the existing bridge, no raising required.

Cross-sectional area of nallah at proposed bridge site is as follows:

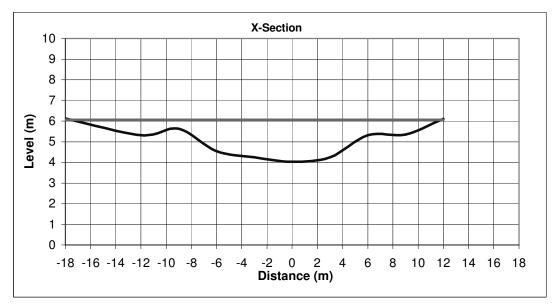
HFL at this location

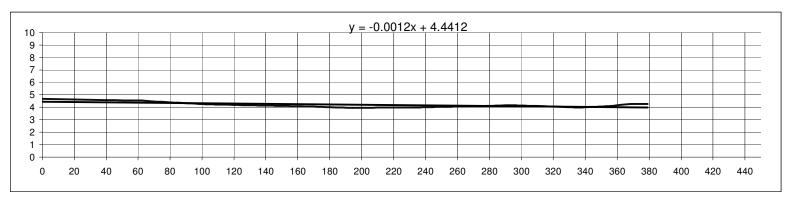
```
6.226 m
```


Distance	Level (m)	HFL (m)	Depth (m)	Av depth	Area	Perimeter	Top width
(m)				(m)	(sqm)	(m)	of flow
							(m)
-12	6.604	6.226					
-9	6.131	6.226	0.095				
-6	6.001	6.226	0.225	0.160	0.480	3.003	3.000
-3	4.269	6.226	1.957	1.091	3.273	3.464	3.000
0	4.263	6.226	1.963	1.960	5.880	3.000	3.000
3	4.264	6.226	1.962	1.963	5.888	3.000	3.000
6	4.573	6.226	1.653	1.808	5.423	3.016	3.000
9	6.101	6.226	0.125	0.889	2.667	3.367	3.000
12	6.321	6.226					
Total					23.61	18.85	18.00

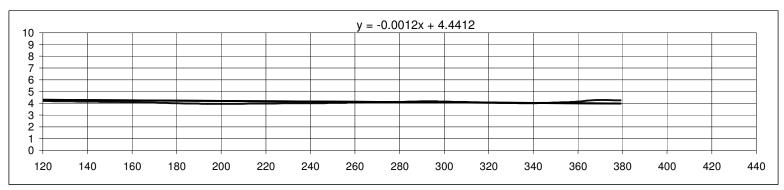
Cross-sectional area of nallah at u/s of the proposed bridge is as follows:

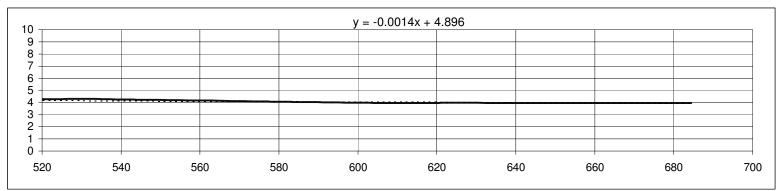
Distance from proposed bridge	120 m
Longitudinal slope u/s side	0.0012
HFL at this location	6.370 m


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow
							(m)
-12	6.786	6.370					
-9	6.765	6.370					
-6	5.433	6.370	0.937				
-3	4.801	6.370	1.569	1.253	3.759	3.066	3.000
0	4.035	6.370	2.335	1.952	5.856	3.096	3.000
3	4.735	6.370	1.635	1.985	5.955	3.081	3.000
6	5.423	6.370	0.947	1.291	3.873	3.078	3.000
9	6.176	6.370	0.194	0.571	1.712	3.093	3.000
12	6.176	6.370	0.194	0.194	0.582	3.000	3.000
15	6.793	6.370					
Total					21.74	18.41	18.00


Cross-sectional area of nallah at d/s of proposed bridge is as follows:

Distance from proposed bridge	120 m
Longitudinal slope d/s side	0.0014
HFL at this location	6.058 m


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)
-18	6.125	6.058					, ,
-12	5.32	6.058	0.738				
-9	5.634	6.058	0.424	0.581	1.743	3.016	3.000
-6	4.542	6.058	1.516	0.970	2.910	3.193	3.000
-3	4.253	6.058	1.805	1.661	4.982	3.014	3.000
0	4.035	6.058	2.023	1.914	5.742	3.008	3.000
3	4.245	6.058	1.813	1.918	5.754	3.007	3.000
6	5.321	6.058	0.737	1.275	3.825	3.187	3.000
9	5.35	6.058	0.708	0.723	2.168	3.000	3.000
12	6.113	6.058					
Total					27.12	21.43	21.00


L-Section of Nallah at U/S

L-Section of Nallah at Existing Bridge

L-Section of Nallah at D/S

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour de Maximum scour lev				15.84 cum/sec 6.226 m 4.263 m 3.49 m 2.735 m
Curtain wall shall be provided be Bed level Scour depth below bed	low maximur	n scour level		4.263 m 1.53 m
Minimum depth of curtan wall as	per IRC:89-1	1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.5 m 3.0 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 3.06 3.06	Provided 3.5 m 6.0 m

CHAPTER-13

BRIDGE AT CH:32/100

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

13. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala :	32.100
	Road No.:	S.H - 9
	G.T S No :	73K
	Nearest Village :	-
	RD :	Km. 32.100
	Latitude	20 ⁰ 54' 00"
	Longitude	86 ⁰ 43' 30"
	Sub-Zone	3(d)

2 Discharge by Dicken's Formula

	Discharge as per Dicken's formula $\mbox{Q} = \mbox{CM}^{3/4} \label{eq:Q}$	(Refer SP-13, page 7)	
	C = 14-19 w	nere annual rainfall is more than 120 cm	
	= 11-14 wh	nere annual rainfall is 60-120 cm	
	= 22 in wes	stern Ghats	
	C adopted	(Since Rain fall is more than 120 cm)	19
	M = Catchme	ent area	0.250 sqkm
	Q =		6.72 cum/s
3	Discharge by Rational Formula		
	Catchment area	0.250 sqkm	25.00 hectares

Length of path from toposheet (L))	2.500 km
Difference in levels from toposhe	et (H)	1.5 m
(Ref: Index map)		
Maximum rain fall (F)	(Ref.SUG of Nanojora River)	216.05 mm
Duaration of storm (T)		5 hrs
One hour rainfall (lo)	$lo = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr
Time of concentration (I.R.C. SP-	-13, Page 12) $tc = (0.87^*L^3/H)^{0.385}$	2.34 hrs.
Critical rainfall intensity $Ic = Io^*(2)$	/(1+tc)	77.71 mm/hr
Discharge Q = 0.028 * P*f* A* Ic		
P = (for loam, lightly of	cultivated or covered)	0.400
f =		1.00
A =		25.00 Hectares
lc =		7.771 cm/hr
Q =		2.176 cum/sec

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 $I_o =$ One hour rainfall in cm.

 I_c = Critical intensity of rainfall in cm per hour

P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)

- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge	(Refer I.R.C.SP-13, page 21)		
	Discharge by Dicken's Formula			6.72 cum/sec
	Discharge by Rational Formula			2.18 cum/sec
	Maximum discharge			6.72 cum/sec
	Next maximum discharge			2.18 cum/sec
	Hence design discharge			3.26 cum/sec
5	Linear Water Way			
	Regime width		W=4.8*Q ^{1/2}	8.67 m
	(Refer IRC:5-1998, Clause 104.3 or S	P-13, Page 23)		
6	Span arrangement			
	In proposed span arrangement, single	cell of 6.0 m has been proposed		6.00 m
	with bed protection.			
7	Scour depth			
	Increase in design discharge, as per If	RC:78-2000,Clause 703.1.1		30%
	Increased design discharge 4.24 cum/sec			4.24 cum/sec
	Mean depth of scour, as per IRC:78-2			
	d _{sf} = 1.34 (D _b	/K _{sf}) ^{1/3}		
	-	lischarge per metre width		0.71 cum/sec/m
	K _{sf} = Silt facto	pr		1.00 (Assumed)
	d _{sf} =			1.06
	Maximum scour depth, as per IRC:78-	2000, Clause 703.3		
	for Abutment	1.27 d _{sf}		1.35 m
8	Vertical Clearance			
	Vertical clearance for opening of high I	evel bridge, from the lowest point	t	

0f deck structure (Ref.I.R.C.-5-1998,Clause-106.2.1,Page-16) 0.6 m

9 Deck level

HFL at existing bridge site including afflux	6.226 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
Depth of super structure including camber	0.680 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	7.562 m
Deck level of the existing bridge	6.914 m
Minimum deck level proposed	7.562 m

As per the proposed allignment, the formation level of bridge has been kept as 7.8 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour dep Maximum scour leve				3.26 cum/sec 6.226 m 5.090 m 1.35 m 4.875 m
Curtain wall shall be provided belo Bed level Scour depth below bed	ow maximur	m scour level		5.09 m 0.21 m
Minimum depth of curtan wall as per IRC:89-1997			u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.0 m 2.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 0.43 0.43	Provided 3.0 m 6.0 m

CHAPTER-14

BRIDGE AT CH:33/500

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

14. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala	:	Baharapal Ghusura
---	------------------	---	-------------------

Road No.:	S.H - 9
G.T S No :	73K
Nearest Village :	-
RD :	Km.33.500
Latitude	20 ⁰ 54' 00"
Longitude	86 ⁰ 44' 30"
Sub-Zone	3(d)

2 Discharge by Dicken's Formula

Discharge as per Dicken's formula $Q = CM^{3/4}$	(refer SP-13, page 7)	
C = 14-19 w	here annual rainfall is more than 120 cm	
= 11-14 w	here annual rainfall is 60-120 cm	
= 22 in we	stern Ghats	
C adopted	(Since Rain fall is more than 120 cm)	19
M = Catchm	ent area	0.400 sqkm
Q =		9.56 cum/s

3 Discharge by Rational Formula

Catchment area	0.400 sqkm	40.00 hectares	
Length of path from toposheet (L)		2.500 km	
Difference in levels from toposheet (H	ł)	1.5 m	
(Ref: Index map)			
Maximum rain fall (F)	(Ref.SUG of Nanojora River)	216.05 mm	
Duaration of storm (T)		5 hrs	
One hour rainfall (lo)	$lo = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr	
Time of concentration (I.R.C. SP-13,	2.34 hrs.		
Critical rainfall intensity $Ic = Io^{*}(2/(1+$	77.71 mm/hr		
Discharge Q = 0.028 * P*f* A* Ic			
P = (for loam, lightly cultive	0.400		
f =		1.00	
A =		40.00 Hectares	
Ic =		7.771 cm/hr	
Q =		3.481 cum/sec	

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 I_0 = One hour rainfall in cm.

 I_c = Critical intensity of rainfall in cm per hour

P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)

- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge		(Refer I.R.C.SP-13, page 21)		
	Discharge by Dicken'	s Formula			9.56 cum/sec
	Discharge by Rationa	l Formula			3.48 cum/sec
	Maximum discharge				9.56 cum/sec
	Next maximum discha	arge			3.48 cum/sec
	Hence design discha	arge			5.22 cum/sec
5	Linear Water Way			1/0	
	Regime width			W=4.8*Q ^{1/2}	10.97 m
	(Refer IRC:5-1998, C	lause 104.3 or S	SP-13, Page 23)		
•	•				
6	Span arrangement				
	In proposed span arra	angement, triple	cell of 3.0 m has been proposed		9.00 m
	with bed protection.				
					9.00 m
7	Scour depth				
	Increase in design dis	charge, as per l	RC:78-2000,Clause 703.1.1		30%
	Increased design disc	charge			6.79 cum/sec
	Mean depth of scour,				
		$d_{sf} = 1.34 (D_b^2)$	/K _{sf}) ^{1/3}		
		Db = Design di	ischarge per metre width		0.62 cum/sec/m
		K _{sf} = Silt factor	r		0.61
		d _{sf} =			1.15
	Maximum scour deptl	n, as per IRC:78	-2000, Clause 703.3		
		for Pier	2 d _{sf}		2.29 m
		for Abutment	1.27 d _{sf}		1.46 m
		$d_{sf} = 1.34 (D_b^2)^2$ $Db = Design distributions (D_b^2)^2$ $K_{sf} = Silt factors (D_{sf}^2)^2$ $d_{sf} = 0$ $d_{sf} = 0$ for Pier	^{1/K} sf) ^{1/3} ischarge per metre width r -2000, Clause 703.3 2 d _{sf}		0.61 1.15 2.29 m

8 Vertical Clearance

Vertical clearance for opening of high level bridge, from the lowest point	
0f deck structure (Ref.I.R.C5-1998,Clause-106.2.1,Page-16)	0.6 m

9 Deck level

HFL at existing bridge site	7.043 m
Afflux	0.003 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
Depth of super structure including camber	0.450 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	8.152 m
Deck level of the existing bridge	7.043 m
Minimum deck level proposed	8.152 m

As per the proposed allignment, the formation level of bridge has been kept as 8.3 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour dep Maximum scour leve				5.22 cum/sec 7.043 m 4.860 m 2.29 m 4.748 m
Curtain wall shall be provided belo Bed level Scour depth below bed	ow maximur	n scour level		4.86 m 0.11 m
Minimum depth of curtan wall as p	ber IRC:89-1	1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall		u/s d/s	2.0 m 2.5 m	
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	0 2xscour depth 0.22 0.22	Provided 3.0 m 6.0 m

CHAPTER-15

BRIDGE AT CH:33/900

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

15. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala :	Kheranga Teraturia Canal
	Road No.:	S.H - 9
	G.T S No :	73K
	Nearest Village :	-
	RD :	Km. 33.900
	Latitude	20 ⁰ 53' 00".
	Longitude	86 ⁰ 44' 30"
	Sub-Zone	3(d)

2 Discharge by Dicken's Formula

	Discharge as per Dicke	en's formula Q = CM ^{3/4}		(refer SP-13, page 7)	
		C = 14-19 when	re annual rainfall is	s more than 120 cm	
		= 11-14 wher	e annual rainfall is	60-120 cm	
		= 22 in weste	ern Ghats		
		C adopted	(Since Rain fall is	s more than 120 cm)	19
		M = Catchment	t area		0.370 sqkm
		Q =			9.01 cum/s
3	Discharge by Rationa	I Formula			
	Catchment area			0.370 sqkm	37.00 hectares

outorinionit alou	o.oro equin	07.00 110010100
Length of path from toposheet (L	_)	2.500 km
Difference in levels from toposhe	eet (H)	1.5 m
(Ref: Index map)		
Maximum rain fall (F)	(Ref.SUG of Nanojora River)	216.05 mm
Duaration of storm (T)		5 hrs
One hour rainfall (lo)	$lo = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr
Time of concentration (I.R.C. SF	P-13, Page 12) $tc = (0.87^*L^3/H)^{0.385}$	2.34 hrs.
Critical rainfall intensity Ic = Io*(2	2/(1+tc)	77.71 mm/hr
Discharge Q = 0.028 * P*f* A* Id		
P = (for loam, lightly	cultivated or covered)	0.400
f =		1.00
A =		37.00 Hectares
lc =		7.771 cm/hr
Q=		3.220 cum/sec

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 I_0 = One hour rainfall in cm.

I_c= Critical intensity of rainfall in cm per hour

	P = Coefficie	nt of runoff for the	e catchment characteristics (Ref.	.Table-4.1P-13,I.R.C	.:SP:13-2004)
	A = Catchme	ent area in hectare	9		
	Q = Maximur	n discharge in cur	mecs.		
	L = Distance	from the critical p	point to the structure in Km.		
	H = The fall i	n level from the cr	itical point to the structure in me	tre	
4	Design Discharge		(Refer I.R.C.SP-13, page 21)		
	Discharge by Dicken	's Formula			9.01 cum/sec
	Discharge by Ration	al Formula			3.22 cum/sec
	Maximum discharge				9.01 cum/sec
	Next maximum disch	narge			3.22 cum/sec
	Hence design disch	narge			4.83 cum/sec
5	Linear Water Way				
	Regime width			W=4.8*Q ^{1/2}	10.55 m
	(Refer IRC:5-1998, 0	Clause 104.3 or Sl	P-13, Page 23)		
6	Span arrangement				
	In proposed span arr	angement, triple c	cell of 3.0 m has been proposed		9.00 m
	with bed protection.				
_	Scour depth				
7					
7		scharge, as per IF	RC:78-2000,Clause 703.1.1		30%
7			RC:78-2000,Clause 703.1.1		30% 6.28 cum/sec
7	Increase in design di	charge , as per IRC:78-20	000, Clause 703.2		
7	Increase in design di Increased design dis	charge	000, Clause 703.2		
7	Increase in design di Increased design dis	charge , as per IRC:78-20 $d_{sf} = 1.34 (D_b^2)$	000, Clause 703.2		
7	Increase in design di Increased design dis	charge , as per IRC:78-20 $d_{sf} = 1.34 (D_b^2)$	000, Clause 703.2 ² /K _{sf}) ^{1/3} lischarge per metre width		6.28 cum/sec
7	Increase in design di Increased design dis	charge , as per IRC:78-20 d _{sf} = 1.34 (D _b ² Db = Design d	000, Clause 703.2 ² /K _{sf}) ^{1/3} lischarge per metre width		6.28 cum/sec 0.60 cum/sec/m
7	Increase in design di Increased design dis	charge , as per IRC:78-20 $d_{sf} = 1.34 (D_b^2)^2$ Db = Design d $K_{sf} = Silt factord_{sf} =$	000, Clause 703.2 ² /K _{sf}) ^{1/3} discharge per metre width or		6.28 cum/sec 0.60 cum/sec/m 0.47
7	Increase in design di Increased design dis Mean depth of scour	charge , as per IRC:78-20 $d_{sf} = 1.34 (D_b^2)^2$ Db = Design d $K_{sf} = Silt factord_{sf} =$	000, Clause 703.2 ² /K _{sf}) ^{1/3} discharge per metre width or		6.28 cum/sec 0.60 cum/sec/m 0.47
7	Increase in design di Increased design dis Mean depth of scour	charge , as per IRC:78-20 $d_{sf} = 1.34 (D_b^2)^2$ Db = Design d $K_{sf} = Silt factord_{sf} =th, as per IRC:78-$	000, Clause 703.2 ² /K _{sf}) ^{1/3} lischarge per metre width or -2000, Clause 703.3		6.28 cum/sec 0.60 cum/sec/m 0.47 1.22
8	Increase in design di Increased design dis Mean depth of scour	charge , as per IRC:78-20 $d_{sf} = 1.34 (D_b^2)^2$ Db = Design d $K_{sf} = Silt factor d_{sf} =th, as per IRC:78-for Pier$	000, Clause 703.2 ² /K _{sf}) ^{1/3} discharge per metre width or 2000, Clause 703.3 2 d _{sf}		6.28 cum/sec 0.60 cum/sec/m 0.47 1.22 2.44 m

0f deck structure (Ref.I.R.C.-5-1998,Clause-106.2.1,Page-16)

0.6 m

9 Deck level

HFL at existing bridge site including afflux	6.801 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
Depth of super structure including camber	0.450 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	7.907 m
Deck level of the existing bridge	6.501 m
Minimum deck level proposed	7.907 m
As not the proposed allignment, the formation layel of bridge has been kent as 9.2 m	

As per the proposed allignment, the formation level of bridge has been kept as 8.3 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour depi Maximum scour leve				4.83 cum/sec 6.801 m 5.610 m 2.44 m 4.362 m
Curtain wall shall be provided below maximum scour level5.61 mBed level5.61 mScour depth below bed1.25 m				
Minimum depth of curtan wall as p	ber IRC:89-	1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.0 m 2.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 2.50 2.50	Provided 3.0 m 6.0 m

CHAPTER-16

BRIDGE AT CH:34/700

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

16. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1 General details Name of the Nala : Talaiharia Katha Polo

Name of the Nala :	Talajharia Katha Pol
Road No.:	S.H - 9
G.T S No :	73K
Nearest Village :	-
RD :	Km.34.700
Latitude	20 ⁰ 53' 00"
Longitude	86 ⁰ 45' 00"
Sub-Zone	3(d)

2 Discharge by Manning's Formula

HFL at proposed bridge site

6.632 m

Cross-section of the stream at different locations are as follows Discharge by Manning's Formula at U/S location

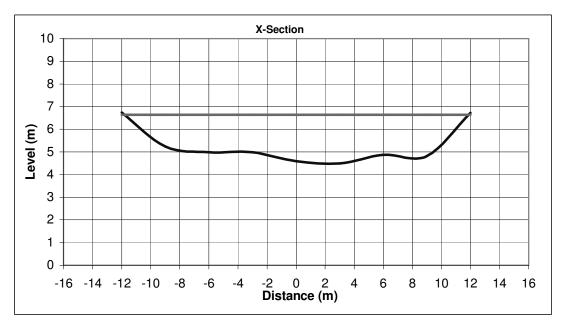
Cross-sectional area of flow		28.51 sqm	
Width of flow		15.00 m	
Wetted perimeter perpendicular to dire	ection of flow	15.12 m	
Hydraulic mean radius R = A/P		1.89 m	
Longitudinal slope as calculated 0.0033 m per n			
Velocity by Manning's formula			
$V = 1/n R^{2/3} S^{1/2}$ (re	efer SP-13, page 17)		
For sluugish type bed (Tal	ble 5.1)		
n =		0.06	
Velocity V =		1.461 m/s	
Discharge Q = A*V		41.66 cum/s	

Discharge by Manning's Formula at existing location

Cross-sectional area of flow	32.54 sqm
Width of flow	18.00 m
Wetted perimeter perpendicular to direction of flow	18.06 m
Hydraulic mean radius R = A/P	1.80 m
Longitudinal slope as calculated	0.0033 m per m
Velocity by Manning's formula	
$V = 1/n R^{2/3} S^{1/2}$ (refer SP-13, page 17)	
For sluugish type bed (Table 5.1)	
n =	0.06
Velocity V =	1.418 m/s
Discharge Q = A*V	46.13 cum/s

	Discharge by Manning's Formula a	at D/S location	
	Cross-sectional area of flow		59.67 sqm
	Width of flow		27.00 m
	Wetted perimeter perpendicular to di	rection of flow	27.60 m
	Hydraulic mean radius R = A/P		2.16 m
	Longitudinal slope as calculated		0.0058 m per m
	Velocity by Manning's formula		
	$V = 1/n R^{2/3} S^{1/2} $ ((refer SP-13, page 17)	
	For sluugish type bed (Ta	able 5.1)	
	n =		0.06
	Velocity V =		2.122 m/s
	Discharge $Q = A^*V$		126.61 cum/s
	The hydrological calculations has been	en done at three sections I.e. at upstream side,	
	downstream side and near proposed	bridge location	
		Instream side and Existing bridge location.	
	Hence the design discharge may be		
3	Discharge by Dicken's Formula		
	Discharge as per Dicken's formula	(refer SP-13, page 7)	
	$Q = CM^{3/4}$		
	C = 14-19 wh	nere annual rainfall is more than 120 cm	
	= 11-14 wh	ere annual rainfall is 60-120 cm	
	= 22 in wes	stern Ghats	
	C adopted ((Since Rain fall is more than 120 cm)	19
	M = Catchme	ent area	0.400 sqkm
	Q =		9.56 cum/s
4	Discharge by Rational Formula		
	Catchment area	0.400 sqkm	40.00 hectares
	Length of path from toposheet (L)		3.010 km
	Difference in levels from toposheet (I	H)	4.2 m
	(Ref: Index map)		
	Maximum rain fall (F) ((Ref.SUG of Nanojora River)	216.05 mm
	Duaration of storm (T)		5 hrs
	One hour rainfall (Io)	$o = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr
	Time of concentration (SP-13, page	12) $tc = (0.87*L^3/H)^{0.385}$	1.95 hrs.
	Critical rainfall intensity $Ic = Io^{*}(2/(1+$		87.96 mm/hr
	Discharge Q = 0.028 * P*f* A* Ic		
	P = (for loam, lightly cult	tivated or covered)	0.400
	f =		1.00
	A =		40.00 Hectare
	Ic =		8.796 cm/hr
	Q=		3.940 cum/sec

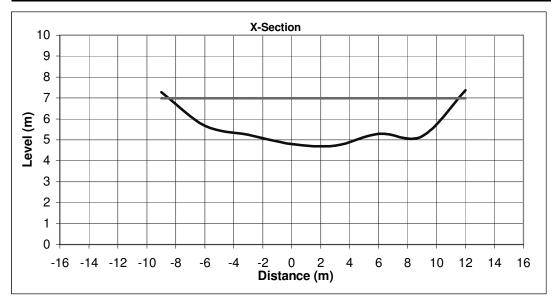
5	Design Discharge	(Refer SP-13, page	21)	
	Discharge by Manning	g's Formula		46.13 cum/sec
	Discharge by Dicken's	s Formula		9.56 cum/sec
	Discharge by Rationa	l Formula		3.94 cum/sec
	Maximum discharge			46.13 cum/sec
	Next maximum disch	arge		9.56 cum/sec
	The difference is beyo	ond 50% of the next maximum disc	harge	
	Hence design disch	arge		14.33 cum/sec
6	Water Way			
•	Regime width		$W = 4.8Q^{1/2}$	18.17 m
	-	104.3 or SP-13, page 23)		
	Provide	Clear span		9.3 m
		No. of spans		1 no.
		Total waterway provided L		9.3 m
7	Scour depth			
	Increase in design dis	charge, as per IRC:78-2000, cl 703	3.1.1	30%
	Increased design disc	harge		18.64 cum/sec
	Mean depth of scour,	as per IRC:78-2000, cl 703.2 $d_{sf} = 1.34 (D_b^2/K_{sf})^{1/3}$		
		Db = Design discharge per metre	e width	2.00 cum/sec/m
		K _{sf} = Silt factor		1.0 Assumed
	Mean depth of scou	$r, d_{sf} =$		2.13 m
	Maximum scour deptl	h, as per IRC:78-2000, cl 703.3		
		for Abutment 1.27	d _{sf}	2.70 m
8	Deck level			
•	HFL at proposed bridg	ae site		6.632 m
	• •	arance (Table 12.1 of SP-13)		0.600 m
	Depth of super structu	, , , , , , , , , , , , , , , , , , ,		0.850 m
	Wearing coat			0.056 m
	-	equired as per hydraulic conditions		8.138 m
	Deck level of the exis			8.280 m
	Minimum deck level p			8.280 m
		-		


Keeping in view of the hydraulic performance of the existing bridge, it is recommended to retain the existing bridge, no raising required.

Cross-sectional area of nallah at proposed bridge site is as follows:

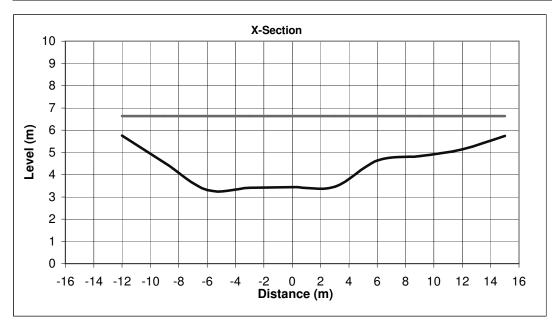
HFL at this location

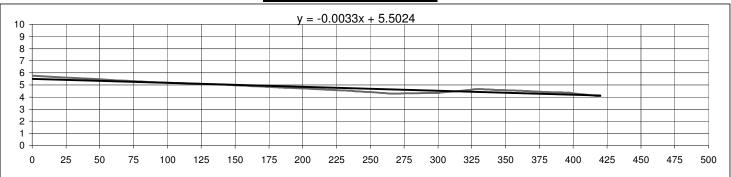
```
6.632 m
```


Distance	Loval (m)	HFL (m)	Dopth (m)	Av depth	Area	Perimeter	Top width
	Level (m)		Depth (m)	-			•
(m)				(m)	(sqm)	(m)	of flow
							(m)
-12	6.744	6.632					
-9	5.235	6.632	1.397				
-6	4.984	6.632	1.648	1.523	4.568	3.010	3.000
-3	4.985	6.632	1.647	1.648	4.943	3.000	3.000
0	4.588	6.632	2.044	1.846	5.537	3.026	3.000
3	4.487	6.632	2.145	2.095	6.284	3.002	3.000
6	4.873	6.632	1.759	1.952	5.856	3.025	3.000
9	4.821	6.632	1.811	1.785	5.355	3.000	3.000
12	6.723	6.632					
Total					32.54	18.06	18.00

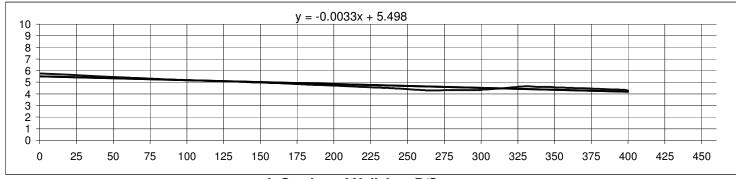
Cross-sectional area of nallah at u/s of the proposed bridge is as follows:

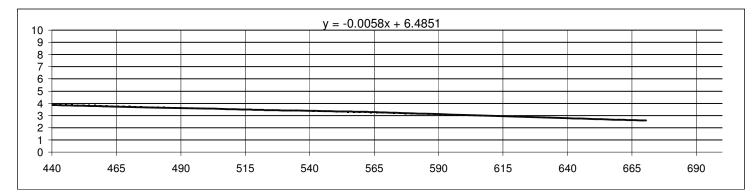
Distance from proposed bridge	110 m
Longitudinal slope u/s side	0.0033
HFL at this location	6.995 m


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow
~ /				()	× I /	()	(m)
-9	7.283	6.995					
-6	5.667	6.995	1.328				
-3	5.238	6.995	1.757	1.543	4.628	3.031	3.000
0	4.796	6.995	2.199	1.978	5.934	3.032	3.000
3	4.726	6.995	2.269	2.234	6.702	3.001	3.000
6	5.296	6.995	1.699	1.984	5.952	3.054	3.000
9	5.165	6.995	1.830	1.765	5.294	3.003	3.000
12	7.372	6.995					
Total					28.51	15.12	15.00


Cross-sectional area of nallah at d/s of proposed bridge is as follows:

Distance from proposed bridge	110 m
Longitudinal slope d/s side	0.0058
HFL at this location	6.632 m


Distance	Level (m)	HFL (m)	Depth (m)	Av depth	Area	Perimeter	Top width
(m)				(m)	(sqm)	(m)	of flow
							(m)
-12	5.752	6.632	0.880				
-9	4.532	6.632					
-6	3.316	6.632					
-3	3.41	6.632	3.222	2.051	18.459	9.300	9.000
0	3.433	6.632	3.199	3.211	9.632	3.000	3.000
3	3.456	6.632	3.176	3.188	9.563	3.000	3.000
6	4.626	6.632	2.006	2.591	7.773	3.220	3.000
9	4.834	6.632	1.798	1.902	5.706	3.007	3.000
12	5.13	6.632	1.502	1.650	4.950	3.015	3.000
15	5.745	6.632	0.887	1.195	3.584	3.062	3.000
Total					59.67	27.60	27.00


L-Section of Nallah at U/S

L-Section of Nallah at Existing Bridge

L-Section of Nallah at D/S

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour de Maximum scour lev	14.33 cum/sec 6.632 m 4.544 m 2.70 m 3.927 m			
Curtain wall shall be provided be Bed level Scour depth below bed	low maximui	m scour level		4.544 m 0.62 m
Minimum depth of curtan wall as	per IRC:89-	1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.0 m 2.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 1.23 1.23	Provided 3.0 m 6.0 m

CHAPTER-17

BRIDGE AT CH:36/005

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

17. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala :	Nalagandha Ghusura
	Road No.:	S.H - 9
	G.T S No :	73K
	Nearest Village :	Talabandha
	RD :	Km.36.005
	Latitude	20 ⁰ 53' 00"
	Longitude	86 ⁰ 45' 30"
	Sub-Zone	3(d)

2 Discharge by Dicken's Formula

Discharge as per Dicke	en's formula Q = CM ^{3/4}		(refer SP-13, page 7)			
	C = 14-19 where annual rainfall is more than 120 cm					
	= 11-14 wher	= 11-14 where annual rainfall is 60-120 cm				
= 22 in western 0		rn Ghats				
	C adopted	(Since Rain fall is	s more than 120 cm)	19		
	M = Catchment	area		3.200 sqkm		
	Q =			45.46 cum/s		

3 Discharge by Rational Formula

Catchment area	3.200) sqkm	320.00 hectares
Length of path from toposheet (L)			2.200 km
Difference in levels from toposheet (H)		1.5 m
(Ref: Index map)			
Maximum rain fall (F)	(Ref.SUG of Nanojora River)		216.05 mm
Duaration of storm (T)			5 hrs
One hour rainfall (lo)	$lo = (F/T)^{*}(T+1)/(1+1)$		129.63 mm/hr
Time of concentration (I.R.C. SP-13,	H) ^{0.385}	2.02 hrs.	
Critical rainfall intensity $Ic = Io^{*}(2/(1+t))$		85.97 mm/hr	
Discharge Q = 0.028 * P*f* A* Ic			
P = (for loam, lightly cultiv	ated or covered)		0.400
f =			1.00
A =			320.00 Hectares
lc =			8.597 cm/hr
Q=			30.812 cum/sec

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 I_0 = One hour rainfall in cm.

 I_c = Critical intensity of rainfall in cm per hour

P =	Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)
• -	

- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge		(Refer I.R.C.SP-13, page 2	21)	
	Discharge by Dicken's	Formula			45.46 cum/sec
	Discharge by Rational	Formula			30.81 cum/sec
	Maximum discharge				45.46 cum/sec
	Next maximum discha	rge			30.81 cum/sec
5	Linear Water Way			1/2	
	Regime width			W=4.8*Q ^{1/2}	32.36 m
	(Refer IRC:5-1998, Cla	ause 104.3 or SF	P-13, Page 23)		
	This is a submersible	zone and additio	onal structures has been pro	wided in this stretch, whi	ch will take care .
	additional discharge. I	Hence scour dep	oth has been calculated on ti	he basis of full dischargii	ng capacity of
	that structure assumi	ing 1 m/sec velo	city.		
	Disharge of 9.0 m clea	ar waterway = (7	7.49-0.056-0.45-4.772)*9*1=	24.462 cumecs	
	Hence design discha	rge			24.462 cum/sec
6	Span arrangement				
Ū		naomont three c	ells of 3.0 m has been prope	end with	9.00 M
	bed protection.	ngement, three c	tens of 5.0 minas been prope		3.00 1
	bed protection.				
7	Scour depth				
	Increase in design disc	charge, as per IR	C:78-2000,Clause 703.1.1		30%
	Increased design discl	harge			31.80 cum/sec
	Mean depth of scour, a	as per IRC:78-20 d _{sf} = 1.34 (D _b ²	000, Clause 703.2 /K _{sf}) ^{1/3}		
		Db = Design di	ischarge per metre width		3.53 cum/sec/m
		K _{sf} = Silt factor	r		1.00 (Assumed)
		d _{sf} =			3.11
	Maximum scour depth	, as per IRC:78-2	2000, Clause 703.3		
		for Pier	2 d _{sf}		6.22 m
		for Abutment	1.27 d _{sf}		3.95 m

0.600 m

8 Vertical Clearance

Vertical clearance for opening of high level bridge, from the lowest point 0f deck structure (Ref.I.R.C.-5-1998,Clause-106.2.1,Page-16)

9 Deck level

HFL at existing bridge site including afflux	7.490 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
Depth of super structure including camber	0.450 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	8.596 m
Deck level of the existing bridge	5.990 m
Minimum deck level proposed	8.596 m

As per the proposed allignment, the formation level of bridge has been kept as 8.7 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

E E N N	24.46 cum/sec 7.490 m 4.772 m 6.22 m 1.273 m					
Curtain wall sl Bed level Scour depth b	4.772 m 3.50 m					
Minimum dept	th of curtan wall as per	u/s d/s	2 m 2.5 m			
Provide depth of curtain wall				u/s d/s	4.0 m 4.5 m	
Rigid apron as	s per IRC:89-1997			u/s d/s	3.0 m 5.0 m	
Flexible apron	1	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 7.00 7.00	Provided 7.0 m 7.0 m	

CHAPTER-18

BRIDGE AT CH:38/100

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

18. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

The existing Bridge at km-**38**/**100** is a Irrigation Canal the Bridge has been constructed in 2005 by Irrigation Department so there is no need of Hydrology.

CHAPTER-19

BRIDGE AT CH:42/400

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

19. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala :	42.400
	Road No.:	S.H - 9
	G.T S No :	73K
	Nearest Village :	-
	RD :	Km.42.400
	Latitude	20 ⁰ 50' 30"
	Longitude	86 ⁰ 46' 00"
	Sub-Zone	3(d)

2 Discharge by Dicken's Formula

	Discharge as per Dicken's formula $\mbox{Q} = \mbox{CM}^{3/4} \label{eq:Q}$	(refer SP-13, page 7)	
	C = 14-19 whe	ere annual rainfall is more than 120 cm	
	= 11-14 whe	ere annual rainfall is 60-120 cm	
	= 22 in west	ern Ghats	
	C adopted	(Since Rain fall is more than 120 cm)	19
	M = Catchmer	nt area	0.205 sqkm
	Q =		5.79 cum/s
3	Discharge by Pational Formula		
3	Discharge by Rational Formula		

Catchment area		0.205 sqkm	20.50 hectares
Length of path from toposheet (L)			2.100 km
Difference in levels from toposheet	t (H)		2 m
(Ref: Index map)			
Maximum rain fall (F)	(Ref.SUG	of Nanojora River)	216.05 mm
Duaration of storm (T)			5 hrs
One hour rainfall (lo)	$lo = (F/T)^{*}($		129.63 mm/hr
Time of concentration (I.R.C. SP-1	3, Page 12)	$tc = (0.87*L^3/H)^{0.385}$	1.71 hrs.
Critical rainfall intensity Ic = Io*(2/(1+tc)		95.67 mm/hr
Discharge Q = 0.028 * P*f* A* Ic			
P = (for loam, lightly cu	ultivated or covere	ed)	0.400
f =			1.00
A =			20.50 Hectares
lc =			9.567 cm/hr
Q =			2.197 cum/sec

Here,

 t_c = Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 $I_o =$ One hour rainfall in cm.

 I_c = Critical intensity of rainfall in cm per hour

P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)

- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge	(Refer I.R.C.SP-13, page 21)		
	Discharge by Dicken's Formula			5.79 cum/sec
	Discharge by Rational Formula			2.20 cum/sec
	Maximum discharge			5.79 cum/sec
	Next maximum discharge			2.20 cum/sec
	Hence design discharge			3.29 cum/sec
5	Linear Water Way		4/0	
	Regime width		W=4.8*Q ^{1/2}	8.71 m
	(Refer IRC:5-1998, Clause 104.3 or SF	P-13, Page 23)		
6	Span arrangement			
	In proposed span arrangement, single of	cell of 6.0 m has been proposed		6.00 m
	with bed protection.			
7	Scour depth			
	Increase in design discharge, as per IR	C:78-2000,Clause 703.1.1		30%
	Increased design discharge			4.28 cum/sec
	Mean depth of scour, as per IRC:78-20			
	d _{sf} = 1.34 (D _b ²			
		scharge per metre width		0.71 cum/sec/m
	K _{sf} = Silt factor	ſ		0.64
	d _{sf} =			1.24
	Maximum scour depth, as per IRC:78-2	2000, Clause 703.3		
	for Abutment	1.27 d _{sf}		1.58 m
8	Vertical Clearance			
	Vertical clearance for opening of high le	evel bridge, from the lowest point		

0f deck structure (Ref.I.R.C.-5-1998, Clause-106.2.1, Page-16) 0.45 m

9 Deck level

HFL at existing bridge site including afflux	7.811 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.450 *m
Depth of super structure including camber	0.680 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	8.997 m
Deck level of the existing bridge	8.336 m
Minimum deck level proposed	9.000 m

* Min. vertical clearance has been kept as 0.45 m as Discharge is just exceeding 3.0 cum/sec.

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discha HFL Bed level Maximum sco Maximum sco	ur depth			3.29 cum/sec 7.811 m 4.721 m 1.58 m 6.234 m
Curtain wall shall be provid Bed level Scour depth below bed	ed below maximum	scour level		4.721 m 0.00 m
Minimum depth of curtan w	all as per IRC:89-19	97	u/s d/s	2 m 2.5 m
Provide depth of curtain wa	all		u/s d/s	2.0 m 2.5 m
Rigid apron as per IRC:89-	1997		u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 0.00 0.00	Provided 3.0 m 6.0 m

CHAPTER-20

BRIDGE AT CH:43/500

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

20. Hydraulic calculations for Minor Bridge of road Bhadrak-Chandbali

1	Name of the Nala :	Chandanpur Po	olo	
	Road No.:	S.H - 9		
	G.T S No :	73K		
	Nearest Village :	Chandanpur		
	RD :	Km.43.500		
	Latitude	20 ⁰ 50' 00'		
	Longitude	86 ⁰ 46' 00"		
	Sub-Zone	3(d)		
2	Discharge by Dicken'	s Formula		
	Discharge as per Dicke		(refer SP-13, page 7)	
		$Q = CM^{3/4}$		
		C = 14-19 whe	re annual rainfall is more than 120 cm	
		= 11-14 when	re annual rainfall is 60-120 cm	
		= 22 in weste	ern Ghats	
		C adopted	(Since Rain fall is more than 120 cm)	19
		M = Catchmen	t area	0.190 sqkm
		Q =		5.47 cum/s
3	Discharge by Rationa	al Formula		
	Catchment area		0.190 sqkm	19.00 hectares
	Length of path from top	oosheet (L)		1.200 km
	Difference in levels from	m toposheet (H)		2.2 m
	(Ref: Index map)			
	Maximum rain fall (F)		(Ref.SUG of Nanojora River)	216.05 mm
	Duaration of storm (T)			5 hrs
	One hour rainfall (Io)		$Io = (F/T)^{*}(T+1)/(1+1)$	129.63 mm/hr
	Time of concentration ((I.R.C. SP-13, P	age 12) $tc = (0.87*L^3/H)^{0.385}$	0.86 hrs.
	Critical rainfall intensity	$v = lo^{*}(2/(1+tc))$)	139.11 mm/hr
	Discharge Q = 0.028 *	P*f* A* Ic		
	P = (for loa	am, lightly cultiva	ted or covered)	0.400
	f =			0.53
	A =			19.00 Hectares
	Ic =			13.911 cm/hr
	Q =			1.569 cum/sec
	Here,			

t_c= Time of concentration i.e.time taken by the runoff from the farthest point on the periphery of catchment

 $I_0 =$ One hour rainfall in cm.

 $I_c =$ Critical intensity of rainfall in cm per hour P = Coefficient of runoff for the catchment characteristics (Ref.Table-4.1P-13,I.R.C.:SP:13-2004)

- A = Catchment area in hectare
- Q = Maximum discharge in cumecs.
- L = Distance from the critical point to the structure in Km.
- H = The fall in level from the critical point to the structure in metre

4	Design Discharge	(Refer I.R.C.SP-13, page 21)		
	Discharge by Dicken's Formula			5.47 cum/sec
	Discharge by Rational Formula			1.57 cum/sec
	Maximum discharge			5.47 cum/sec
	Next maximum discharge			1.57 cum/sec
	Hence design discharge			2.35 cum/sec
5	Linear Water Way			
	Regime width		$W = 4.8 * Q^{1/2}$	7.36 m
	(Refer IRC:5-1998, Clause 104.3 or S	P-13, Page 23)		
6	Span arrangement			
	In proposed span arrangement, single	cell of 6.0 m has been proposed		6.0 m
	with bed protection.			
7	Scour depth			
	Increase in design discharge, as per I	RC:78-2000,Clause 703.1.1		30%
	Increased design discharge			3.06 cum/sec
	Mean depth of scour, as per IRC:78-2			
	$d_{sf} = 1.34 (D_{b})$	² /K _{sf}) ^{1/3}		
	-	discharge per metre width		0.51 cum/sec/m
	K _{sf} = Silt facto	Dr		1.00 (Assumed)
	d _{sf} =			0.86
	Maximum scour depth, as per IRC:78	-2000, Clause 703.3		
	for Abutment	1.27 d _{sf}		1.09 m
8	Vertical Clearance			
	Vertical clearance for opening of high	level bridge, from the lowest point		
	Of deck structure (Ref.I.R.C5-1998,0	Clause-106.2.1,Page-16)		0.45 m

9 Deck level

HFL at existing bridge site	8.121 m
Minimum vertical clearance (Table 12.1 of SP-13)	0.450 m
Depth of super structure including camber	0.680 m
Wearing coat	0.056 m
Minimum deck level required as per hydraulic conditions	9.307 m
Deck level of the existing bridge	8.746 m
Minimum deck level proposed	9.307 m

As per the proposed allignment, the formation level of bridge has been kept as 9.3 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour de Maximum scour lev				2.35 cum/sec 8.121 m 6.699 m 1.09 m 7.033 m
Curtain wall shall be provided be Bed level Scour depth below bed	elow maximur	n scour level		6.699 m 0.00 m
Minimum depth of curtan wall as	per IRC:89-	1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.0 m 2.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 0.00 0.00	Provided 3.0 m 6.0 m

APPENDIX

ORISSA STATE ROAD PROJECT

HYDROLOGICAL STUDY

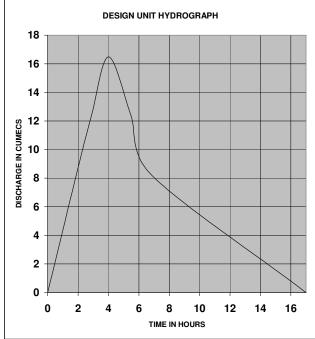
Road Name of River/Nallah/Stream	: Chandbali-Bhadrak(S.H-49) : Nanojora Nala
Name of nearest Village/Town RD	
Lattitude	: 86 ⁰ 2' 51"
Longitude	: 21 ⁰ 54' 44"
GT Sheet No.	: 73 L

Estimation of slope

SI No.	Reduced Distance starting	Reduced Levels of River Bed	Length of each segment Li	Diff in RL	(Di-1+ Di)	Li (Di-1 + Di) (4) x (6) (m x km)
1	0	393	0	0	0	0
2	2350	400	2350	7	7.0	16.45
3	8500	420	6150	20	27.0	166.05
4	8900	425	400	5	25.0	10
						192.5

$$S = \sum_{i} L_{i} (D_{i-1} + D_{i}) = 2.43 \text{ m/km}$$

 L^{2}

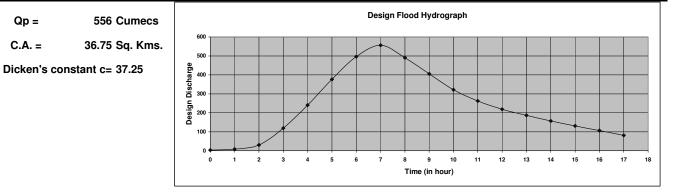

Synthetic Unitgraph

Catchment area =
L =
Lc =
LxLc/(sqrt(s)) =
tp = 1.97((L X Lc)/sqrt(S))0.24 =

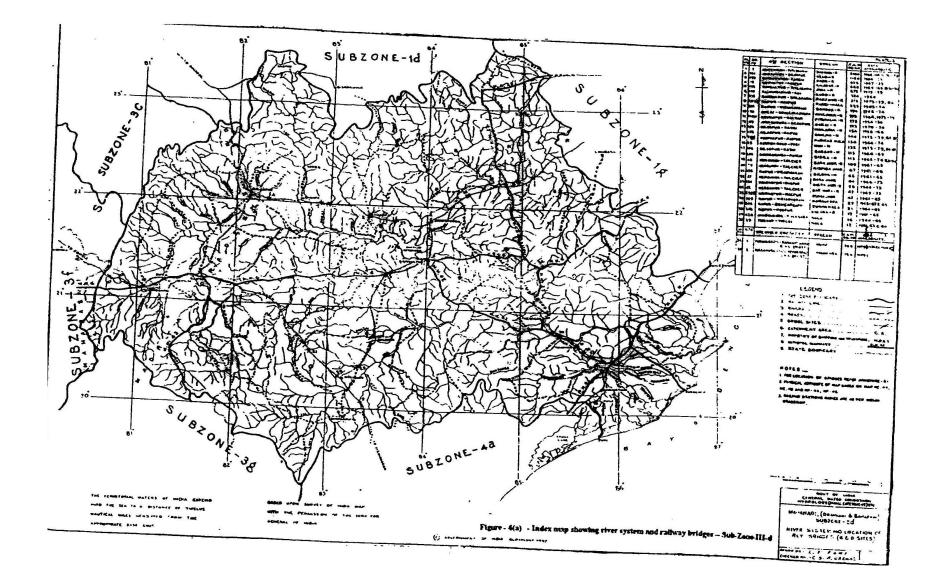
qp = 1.12 (tp)-0.66 =
Qp = Catchment area x qp =
W50 = 2.195 (qp)-1.008 =
W75 = 1.221 (qp)-0.95 =
WR50 = 0.995 (qp)-0.94 =
WR75 = 0.532 (qp)-0.93 =
Q50 = 0.5 x Qp =
Q75 = 0.75 x Qp =
TB = 5.72 (tp)0.77 =

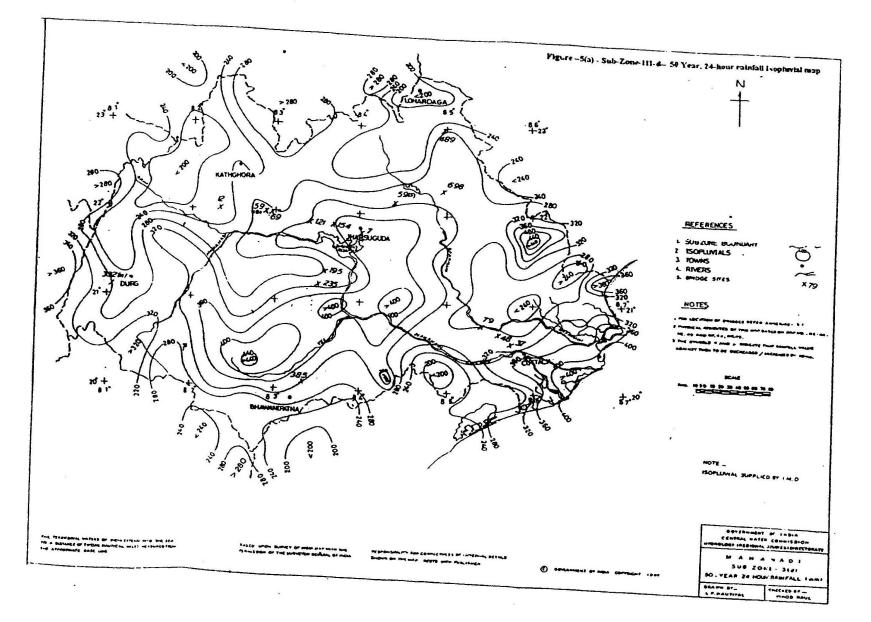
sq.kms.
km
km
hrs
hrs
cumec

	Unit Graph(1	cm 1 hour)	16
SI. No	Time	Ordinate	
1	0	0	
2	1	4.9	
3	2	9	ყელი 12 კელი კელი კელი კელი კელი კელი კელი კელი
4 5	3	13.1	
5	4	16.49	ੇ 10
6 7	5	14	
7	6 7	10.2	8 RGI
8	7	7.8	HAI
9	8	6.4	12 10 10 10 10 10 10 10 10 10 10 10 10 10
10	9	5.2	□ 6
11	10	4.2	
12	11	3.3	4
13	12	2.7	
14	13	2	2
15	14	1.4	
16	15	1	
17	16	0.5	0
18	17	0	
	Total =	102.19 cumec hou	Irs
	=	10.01044898 mm	



STORM DURATION Td = 1.1 Tp			
= 1.1 X 4 = 4.4 say 5 Hrs			
From Plate 9(a), 50 Year- 24 Hour Rainfall = 320 mm.		320	mm
Areal Rainfall = 69 % of Point Rainfall	69	220.8	mm
Areal reduction factor =97.85 %	97.85	216.05	mm


Cumulative percentage		Loss Rate 0.26 cm / Hour	2.6 mm	/hour
Hours	Storm Percentage	Storm Rainfall	Excess Rainfall	Incremental R.E.
0	0	0	0	0
1	64	138.27	135.67	135.67
2	83	179.32	174.12	38.45
3	91	196.61	188.81	14.68
4	97	209.57	199.17	10.36
5	100	216.05	203.05	3.88


Estimation of Design Flood Hydrograph

Unit Graph(1 cm 1 hour)		R.E.	R.E.					_	Design	
SI.	Time	Ordinate	Peak to	Reverse					Base	Flood
No			Peak	order	1.036	3.845	13.567	1.468	Flow	Hydrograph
1	0	0			0				3.7	3.70
2	1	4.25			4.40	0.00			3.7	8.10
3	2	10.25			10.62	16.34	0.00		3.7	30.66
4	3	17.25	3.88	10.36	17.87	39.41	57.66	0.00	3.7	118.64
5	4	24	14.68	38.45	24.86	66.33	139.06	6.24	3.7	240.19
6	5	29	135.67	135.67	30.04	92.28	234.03	15.05	3.7	376.75
7	6	25	38.45	14.68	25.90	111.51	325.61	25.32	3.7	496.01
8	7	20.5	10.36	3.88	21.24	96.13	393.44	35.23	3.7	556.43
9	8	16			16.58	78.82	339.18	42.57	3.7	490.16
10	9	13			13.47	61.52	278.12	36.70	3.7	404.76
11	10	10.75			11.14	49.99	217.07	30.09	3.7	321.69
12	11	9.25			9.58	41.33	176.37	23.49	3.7	262.43
13	12	7.75			8.03	35.57	145.85	19.08	3.7	218.43
14	13	6.5			6.73	29.80	125.49	15.78	3.7	186.55
15	14	5.25			5.44	24.99	105.14	13.58	3.7	157.03
16	15	4.0			4.14	20.19	88.19	11.38	3.7	131.18
17	16	3.25			3.37	15.38	71.23	9.54	3.7	106.22
18	17	0			0.00	12.50	54.27	7.71	3.7	80.69
						0.00	44.09	5.87	3.7	55.70
							0.00	4.77	3.7	10.02
								0	3.7	4.96
									3.7	3.70

GT Sheet No. 73 L

ähāpur PO Po Koranjadiho Po BM 2:4 Nuāsahi Ferr So Karaupalit So Karaupalit Karaupalit So Karaupalit So Karaupalita 028.100 18 (Réveruez Ghanteshwar Prose Pelice outpar Bhejjādiha BAY OF BENGAL Kanpatha Pelice outpost 28-800 Ponchutikri Genguti N Ferry Khadijān 1 Hatopur PO PO Po Kudakagthi PO Chhedak Kaithkola BM 3: 10 pollar (PWD) Guanla a Bauljora 42 400 Boda Olãg Mriganayan obindapur Dosing Mang Po Ja Narasinghapur Po Chardla Bada Ostio Ana al fotr (Jan) Dhamro Naya Tapu Kuanreal 43-FR DHAMRA IB (PWD) las Urāsāhi 3 10 KALIBHANI DIAN R Chandbali 5 Bada Arig Balarampur ro zero. Palace Adhasahi P ... Nalitapatia Kanriapal BM 4.7 a miked jung Kug Kondia B Baruna PO PTO Orogirla Bar BHITAR KANIKA & F itar Kanika Annual for PURA N rzāpun sem Pritti Bhārigoda BM 25 BM 25 BM 25 Ranhamina M P.F Ayate Aul PATSALA Malipur Banagarh N Bhuinpur Udaypalli Parile PD Mahu during rainy section Kāt espaga Ferry PO ^ASatiā DE /R Karara Robilo Patorpugant Balipatano Por Gobalpur atargarh Rajgath Haugari BM 3.9 LTO Han Patamundai Mount for 55 minus Alabha sany Käthpängra Rājnagar Batharha 2. 20 Gajarāj À Kharianta A PO Jigurana Gobari N CANAL IS (PI Kailio 10-PO Barapada Ratping ana Bodhgën Ning Badhgën Ballsahi Pao Deulparha 2 mbra Andell Böbor Gobindagur, terry po Bölisahi Rankt Rankt Deulparha po Bolijaynogan Nuna N Ferry Po Parsa Baradan Po Kishon Rankt Canad Po Kishon Rankt Canad Gopinadtyur Raranja Mangalpur 3 Gopinadtyur Raranja Adol Bai Bābar L Gopindtbur Karanja Mangolpur Bailkuda Po barakul Po Adol Teragop ro Chherökani WD) True Baulakan Kentia Ramo Kharnak Khurusidadt. Patlipanka DB PO

	Har RESERVED FO
Portungpäring Portun	682a Delagiri Pahar
	6276 Nud
Aughals no po Smillio 18 Auguar Alitera Palkero Palkonda Alitera Palkonda	Billevine) Goppath
Ditkfother Ditkfother Do bents mixed jungte PD of Ditkfother	Dalang Tudigadja Sarasanich
A A KP C A A KP C A A A A A A A A A A A A A A A A A A	india situng a
Phulbandle The Philosophic States Sta	
Alla Porta P	PTO BM 12
Anapolitica and a second a sec	PS Märkung Bari
Madanpur Machhol PO Control PO Co	Maitapur PO Sodamanpi
PO Ar a control of the point of	SUDDParto PO
Po sunaadstrager Bornchndrapur Apar N (Contindopur Po and Po Soyoure add Po Soyo	PO ()
PO Randgundu PO Randgundu PO Rabati N Rabati N	2.00 Palla
Rampho Patrongo o Manhangpur Biruðinporde o 200 E Sátling Hole o Pauli Biruðinporde Sátling Hole o Pauli Bir	C May

(BHADRAK TO ANANDPUR,SH-53) (0 TO 50 km)

INDEX Bhadrak to Anandpur (0.0 - 50.0 km)

SI. No	Title	Pages
1	Chapter-1	1 to 1
2	Chapter-2	1 to 8
3	Chapter-3	1 to 8
4	Chapter-4	1 to 3
5	Chapter-5	1 to 1
6	Chapter-6	1 to 1
7	Chapter-7	1 to 9
8	Appendix	1 to 10

CHAPTER-1

BRIDGE AT CH:9/800

The Bridge at chainage 9/800 Hansinapur Culvert, existing Span (1x 3.55+1x 3.95)m is an irrigation Canal.So there is no need of Hydrology.The span arrangement is same as existing.

CHAPTER-2

BRIDGE AT CH:11/600

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

m

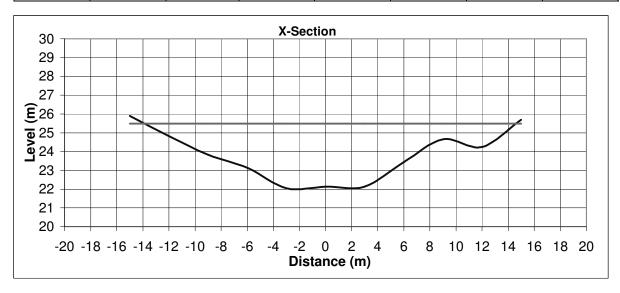
m

2. Hydraulic calculations for Minor Bridge of road Bhadrak-Anandpur

1	General details		
•	Name of the Nala:	Ganijanga Bridge	
	Road No.:	S.H - 53	
	G.T S No :	73K	
	Nearest Village :	Ganijanga	
	RD :	Km.11.600	
	Latitude	21 ⁰ 5' 00"	
	Longitude	86 ⁰ 27' 00"	
	Sub-Zone	3(d)	
2	Discharge by Manni	ng's Formula	
	HFL at bridge site		25.485 m
	Cross-section of the	e stream at different locations are as follows	
	Discharge by Manni	ng's Formula at U/S location	
	Cross-sectional area	of flow	62.01 sqm
	Width of flow		24.00 m
	Wetted perimeter per	pendicular to direction of flow	24.85 m
	Hydraulic mean radiu	is R = A/P	2.50 m
	Longitudinal slope as	calculated	0.0015 m per m
	Velocity by Manning's	s formula	
	V = 1/n F	R ^{2/3} S ^{1/2} (refer SP-13, page 17)	
	For sluu	gish type bed (Table 5.1)	
	n =		0.05
	Velocity	V =	1.425 m/s
	Discharge Q = A*V		88.36 cum/s
	Discharge by Manni	ng's Formula at existing location	
	Cross-sectional area	of flow	53.93 sqm
	Width of flow		24.00 m
	Wetted perimeter per	pendicular to direction of flow	24.97 m
	Hydraulic mean radiu	is R = A/P	2.16 m
	Longitudinal slope as	calculated	0.0034 m per m
	Velocity by Manning's	s formula	
	V = 1/n F	R ^{2/3} S ^{1/2} (refer SP-13, page 17)	
	For sluu	gish type bed (Table 5.1)	
	n =		0.05
	Velocity	V =	1.948 m/s
	Discharge Q = A*V		105.07 cum/s

	Discharge by Manning's Formula at I	D/S location	
	Cross-sectional area of flow		65.47 sqm
	Width of flow		24.00 m
	Wetted perimeter perpendicular to direc	tion of flow	25.37 m
	Hydraulic mean radius R = A/P		2.58 m
	Longitudinal slope as calculated		0.0022 m per m
	Velocity by Manning's formula		
	$V = 1/n R^{2/3} S^{1/2} $ (ref	fer SP-13, page 17)	
	For sluugish type bed (Tabl	le 5.1)	
	n =		0.05
	Velocity V =		1.765 m/s
	Discharge Q = A*V		115.52 cum/s
	The hydrological calculations has been	done at three sections I.e. at upstream side,	
	downstream side and near proposed br	idge location	
	By comparision of upstream and downs	tream side and Existing bridge location.	
	Hence the design discharge may be tak	ten as 105.07 cum/s	
3	Discharge by Dicken's Formula		
	Discharge as per Dicken's formula	(refer SP-13, page 7)	
	$Q = CM^{3/4}$		
	C = 14-19 where	e annual rainfall is more than 120 cm	
	= 11-14 where	e annual rainfall is 60-120 cm	
	= 22 in wester	n Ghats	
	C adopted (Si	nce Rainfall is more than 120 cm)	19
	M = Catchment	area	9.375 sqkm
	Q =		101.80 cum/s
4	Discharge by Rational Formula		
•	Catchment area	9.375 sqkm	937.50 hectares
	Length of path from toposheet (L)	eleve equili	5.500 km
	Difference in levels from toposheet (H)		6 m
	(Ref: Index map)		0
	,	ef: SUG of Taradadiha River)	150.93 mm
	Duaration of storm (T)		4 hrs
		= (F/T)*(T+1)/(1+1)	94.33 mm/hr
	Time of concentration (SP-13, page 12)	0 0005	3.41 hrs.
	Critical rainfall intensity $lc = lo^{*}(2/(1+tc))$	42.82 mm/hr	
	Discharge Q = $0.028 \times P^{+}f^{+}A^{+}$ Ic		
	P = (for loam, lightly cultivation)	0.400	
	f =		1.00
	A =		937.50 Hectares
	lc =		4.282 cm/hr
	Q =		44.960 cum/sec
	<u>u</u> –		

5	Design Discharge	(Refer S	SP-13, page 21)	
	Discharge by Manning			105.07 cum/sec
	Discharge by Dicken's	Formula		101.80 cum/sec
	Discharge by Rational	Formula		44.96 cum/sec
	Maximum discharge			105.07 cum/sec
	Next maximum discha	rge		44.96 cum/sec
	The difference is beyo	nd 50% of the next ma	ximum discharge	
	Hence design discha		-	67.44 cum/sec
6	Water Way			
-	Regime width		$W = 4.8Q^{1/2}$	39.42 m
	(Refer IRC:5-1998, cl	104.3 or SP-13. page	23)	
	Provide	Clear span	-/	8 m
		No. of spans		2 no.
		Total waterway prov	ided L	16.00 m
	Two additional box cul		within this location to take care	
	Hence total waterway	•		Ũ
	,			
7	Scour depth			
	Increase in design disc	charge, as per IRC:78-	2000, cl 703.1.1	30%
	Increased design disch	narge		87.67 cum/sec
	Mean depth of scour, a	as per IRC:78-2000, cl $d_{sf} = 1.34 (D_b^2/K_{sf})^{1/3}$	703.2	
		Db = Design dischar K _{sf} = Silt factor	ge per metre width	4.38 cum/sec/m
	Silt factor has been ca	alculated according to	data collected from site	
		Depth	Silt factor	
		3	1.307	
		4.5	1.93	
	Average		1.6185	1.619
	Mean depth of scour	, d _{sf} =		3.06 m
	Maximum scour depth	, as per IRC:78-2000,	cl 703.3	
		for Pier		6.11 m
		for Abut	ment	3.88 m
8	Deck level			
	HFL at proposed bridg	e site including afflux		25.485 m
	Minimum vertical clear	ance (Table 12.1 of S	P-13)	0.900 m
	Depth of super structu	re		0.400 m
	Wearing coat			0.056 m
	Minimum deck level re	quired as per hydrauli	c conditions	26.841 m
	Deck level of the existi	ng bridge		26.410 m
	Minimum deck level pr	oposed		26.841 m

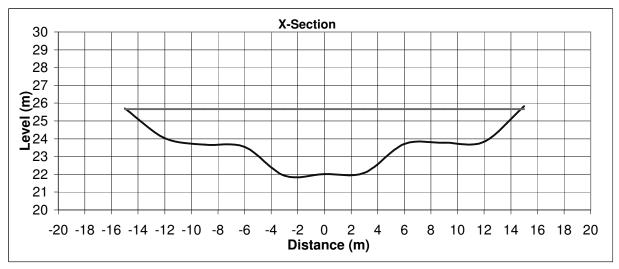

As per the proposed allignment, the formation level of bridge has been kept as 27.16 m

Cross-sectional area of nallah at proposed bridge site is as follows:

HFL at this location

25.485 m

Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter	Top width of
						(m)	flow (m)
-15	25.898	25.485					
-12	24.815	25.485	0.670				
-9	23.836	25.485	1.649	1.160	3.479	3.156	3.000
-6	23.136	25.485	2.349	1.999	5.997	3.081	3.000
-3	22.05	25.485	3.435	2.892	8.676	3.191	3.000
0	22.134	25.485	3.351	3.393	10.179	3.001	3.000
3	22.125	25.485	3.360	3.356	10.067	3.000	3.000
6	23.441	25.485	2.044	2.702	8.106	3.276	3.000
9	24.658	25.485	0.827	1.436	4.307	3.237	3.000
12	24.235	25.485	1.250	1.039	3.116	3.030	3.000
15	25.685	25.485					
Total					53.93	24.97	24.00

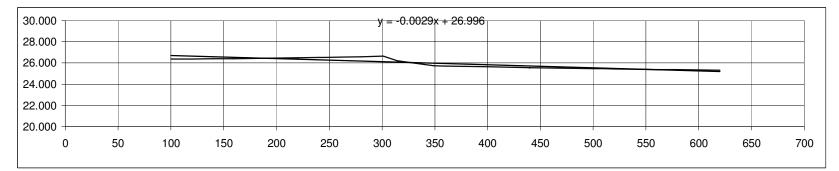

0

Cross-sectional area of nallah at u/s of the proposed bridge is as follows:

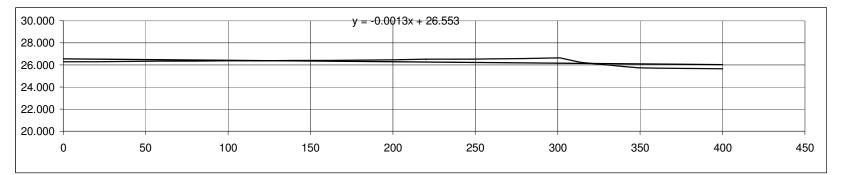
Distance from proposed bridge				
Longitudinal slope u/s side				
HFL at this location				

120	m
0.0015	
25.665	m

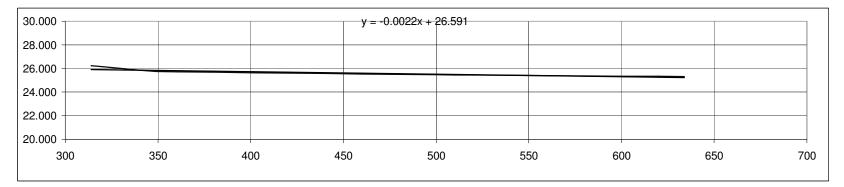

Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter	Top width of
						(m)	flow (m)
-15	25.698	25.665					
-12	24.025	25.665	1.640				
-9	23.672	25.665	1.993	1.817	5.450	3.021	3.000
-6	23.542	25.665	2.123	2.058	6.174	3.003	3.000
-3	21.918	25.665	3.747	2.935	8.805	3.411	3.000
0	22.007	25.665	3.658	3.703	11.108	3.001	3.000
3	22.095	25.665	3.570	3.614	10.842	3.001	3.000
6	23.712	25.665	1.953	2.762	8.285	3.408	3.000
9	23.777	25.665	1.888	1.921	5.762	3.001	3.000
12	23.832	25.665	1.833	1.861	5.581	3.001	3.000
15	25.834	25.665					
Total					62.01	24.85	24.00



Cross-sectional area of nallah at d/s of proposed bridge is as follows:


Distance from proposed bridge	120 m
Longitudinal slope d/s side	0.0022
HFL at this location	25.221 m

Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter	Top width of
						(m)	flow (m)
-15	25.354	25.221					
-12	24.499	25.221	0.722				
-9	22.307	25.221	2.914	1.818	5.454	3.715	3.000
-6	22.298	25.221	2.923	2.919	8.756	3.000	3.000
-3	21.541	25.221	3.680	3.302	9.905	3.094	3.000
0	21.553	25.221	3.668	3.674	11.022	3.000	3.000
3	21.565	25.221	3.656	3.662	10.986	3.000	3.000
6	22.298	25.221	2.923	3.290	9.869	3.088	3.000
9	24.051	25.221	1.170	2.047	6.140	3.475	3.000
12	24.167	25.221	1.054	1.112	3.336	3.002	3.000
15	25.352	25.221					
Total					65.47	25.37	24.00



L-Section of Nallah at U/S

L-Section of Nallah at D/S

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour d Maximum scour l	lepth			67.44 cum/sec 25.485 m 22.050 m 6.11 m 19.371 m
Curtain wall shall be provided Bed level Scour depth below bed	below maximum	n scour level		22.05 m 2.68 m
Minimum depth of curtan wall	as per IRC:89-1	997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	3.5 m 4.0 m
Rigid apron as per IRC:89-199	7		u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 5.36 5.36	Provided 5.5 m 6.0 m

CHAPTER-3

BRIDGE AT CH:17/700

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project

3. Hydraulic calculations for Minor Bridge of road Bhadrak-Anandpur

1	General details			
•	Name of the Nala:	Kapali Nala		
	Road No.:	S.H - 53		
	G.T S No :	73K		
	Nearest Village :	Banta		
	RD :	Km.17.700		
	Latitude	21 [°] 6' 00"		
	Longitude	86 ⁰ 26' 00"		
	Sub-Zone	3(d)		
2	Discharge by Mannin	g's Formula		
	HFL at bridge site			30.935 m
	Cross-section of the	stream at different location	ons are as follows	
	Discharge by Mannin	g's Formula at U/S locatio	on	
	Cross-sectional area of	flow		72.30 sqm
	Width of flow			24.00 m
	Wetted perimeter perp	endicular to direction of flow	V	25.57 m
	Hydraulic mean radius	R = A/P		2.83 m
	Longitudinal slope as c	alculated		0.0001 m per m
	Velocity by Manning's	ormula		
	$V = 1/n R^2$	^{/3} S ^{1/2} (refer SP-13,	page 17)	
	For sluugi	h type bed (Table 5.1)		
	n =			0.05
	Velocity V	=		0.400 m/s
	Discharge Q = A*V			28.91 cum/s
	Discharge by Mannin	g's Formula at existing lo	cation	
	Cross-sectional area of	flow		62.91 sqm
	Width of flow			24.00 m
	Wetted perimeter perp	endicular to direction of flow	V	25.97 m
	Hydraulic mean radius	R = A/P		2.42 m
	Longitudinal slope as c	alculated		0.0002 m per m
	Velocity by Manning's			
	V = 1/n R ²	^{/3} S ^{1/2} (refer SP-13,	page 17)	
	For sluugi	sh type bed (Table 5.1)		
	n =			0.05
	Velocity V	=		0.510 m/s
	Discharge Q = A*V			32.09 cum/s
	Discharge by Mannin	g's Formula at D/S locatio	on	
	Cross-sectional area of	flow		80.79 sqm
	Width of flow			24.00 m
	Wetted perimeter perp	endicular to direction of flow	V	26.42 m
	Hydraulic mean radius	R = A/P		3.06 m

		0.0015 m por m
	Longitudinal slope as calculated	0.0015 m per m
	Velocity by Manning's formula	
	$V = 1/n R^{2/3} S^{1/2}$ (refer SP-13, page 17)	
	For sluugish type bed (Table 5.1)	
	n =	0.05
	Velocity V =	1.632 m/s
	Discharge Q = A*V	131.84 cum/s
	The hydrological calculations has been done at three sections I.e. at upstream side,	
	downstream side and near proposed bridge location	
	By comparision of upstream and downstream side and Existing bridge location.	
	Hence the design discharge may be taken as 32.09 cum/s	
3	Discharge by Dicken's Formula	
Ŭ	Discharge as per Dicken's formula (refer SP-13, page 7)	
	$Q = CM^{3/4}$	
	C = 14-19 where annual rainfall is more than 120 cm	
	= 11-14 where annual rainfall is 60-120 cm	
	= 22 in western Ghats	
	C adopted (Since Rainfall is more than 120 cm)	19
	M = Catchment area	18.750 sqkm
	Q =	171.20 cum/s
4	Discharge by Rational Formula	
	Catchment area 18.750 sqkm	1875.00 hectares
	Length of path from toposheet (L)	10.100 km
	Difference in levels from toposheet (H)	10 m
	(Ref: Index map)	
	Maximum rain fall (F) (Ref.SUG of Taradadiha River)	150.93 mm
	Duaration of storm (T)	4 hrs
	One hour rainfall (lo) $lo = (F/T)^{*}(T+1)/(1+1)$	94.33 mm/hr
	Time of concentration (SP-13, page 12) $tc = (0.87*L^3/H)^{0.385}$	5.65 hrs.
	Critical rainfall intensity $lc = lo^{(2)}(1+tc)$	28.39 mm/hr
	Discharge Q = $0.028 \times P^{\text{ff}} A^{\text{ff}}$ Ic	20.39 1111/11
		0.400
	P = (for loam, lightly cultivated or covered)	
	f =	1.00
	A =	1875.00 Hectares
	Ic =	2.839 cm/hr
	Q =	59.618 cum/sec
5	Design Discharge (Refer SP-13, page 21)	
	Discharge by Manning's Formula	32.09 cum/sec
	Discharge by Dicken's Formula	171.20 cum/sec
	Discharge by Rational Formula	59.62 cum/sec
	Maximum discharge	171.20 cum/sec
	Next maximum discharge	59.62 cum/sec
	The difference is beyond 50% of the next maximum discharge	
	Hence design discharge	89.43 cum/sec

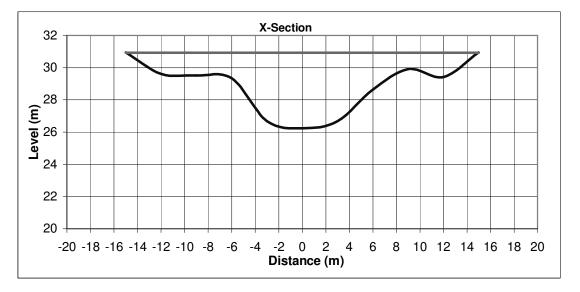
6

5	Water Way				
	Regime width		$W = 4.8Q^{1/2}$	45.39 m	
	(Refer IRC:5-1998, cl	104.3 or SP-13, page 23)			
	Provide	Clear span		9 m	
		No. of spans		3 no.	
		Total waterway provided L		27.00 m	

The existing bridge is of 2 spans of 7.0 m. As per site condition, PMGSY has constructed a bridge at 1.0 km U/s of 4 x 7.0 m. Hence the same ventway has been adopted .

One additional box culvert of 3 m clear ventway is also provided within this location to take care discharge Hence total waterway = 27 + 3 = 30.0 m

7	Scour depth	
	Increase in design discharge, as per IRC:78-2000, cl 703.1.1	30%
	Increased design discharge	116.25 cum/sec
	Mean depth of scour, as per IRC:78-2000, cl 703.2 $d_{sf} = 1.34 ~ (D_b{}^2/K_{sf})^{1/3} \label{eq:def_st}$	
	Db = Design discharge per metre width	3.88 cum/sec/m
	K_{sf} = Silt factor	1.0 (Assumed)
	Mean depth of scour, $d_{sf} =$	3.31 m
	Maximum scour depth, as per IRC:78-2000, cl 703.3	
	for Pier	6.61 m
	for Abutment	4.20 m
8	Deck level	
	HFL at proposed bridge site	30.935 m
	Minimum vertical clearance (Table 12.1 of SP-13)	0.900 m
	Depth of super structure	0.500 m
	Wearing coat	0.056 m
	Minimum deck level required as per hydraulic conditions	32.391 m
	Deck level of the existing bridge	31.860 m
	Minimum deck level proposed	32.391 m
8	Maximum scour depth, as per IRC:78-2000, cl 703.3 for Pier for Abutment Deck level HFL at proposed bridge site Minimum vertical clearance (Table 12.1 of SP-13) Depth of super structure Wearing coat Minimum deck level required as per hydraulic conditions Deck level of the existing bridge	6.61 m 4.20 m 30.935 m 0.900 m 0.500 m 0.056 m 32.391 m 31.860 m


As per the proposed allignment, the formation level of bridge has been kept as 32.91 m

Cross-sectional area of nallah at proposed bridge site is as follows:

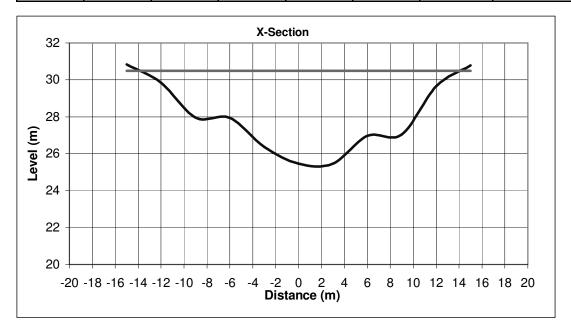
HFL at this location

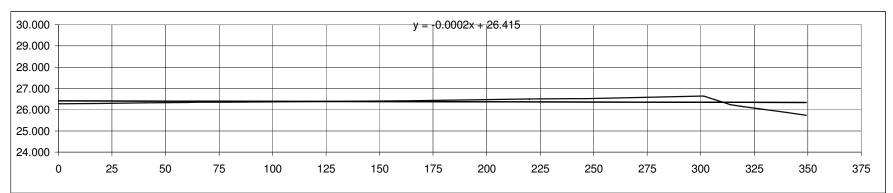
```
30.935 m
```

Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)
-15	30.951	30.935					
-12	29.623	30.935	1.312				
-9	29.524	30.935	1.411	1.362	4.084	3.002	3.000
-6	29.333	30.935	1.602	1.507	4.520	3.006	3.000
-3	26.669	30.935	4.266	2.934	8.802	4.012	3.000
0	26.23	30.935	4.705	4.486	13.457	3.032	3.000
3	26.679	30.935	4.256	4.481	13.442	3.033	3.000
6	28.645	30.935	2.290	3.273	9.819	3.587	3.000
9	29.914	30.935	1.021	1.656	4.966	3.257	3.000
12	29.412	30.935	1.523	1.272	3.816	3.042	3.000
15	30.942	30.935					
Total					62.91	25.97	24.00

Cross-sectional area of nallah at u/s of the proposed bridge is as follows:

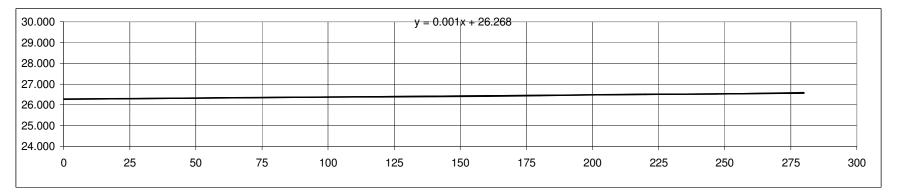
Distance Level (m) HEL (m) Depth (n	Av depth Area Perimeter Top width of
HFL at this location	30.965 m
Longitudinal slope u/s side	0.0001
Distance from proposed bridge	300 m

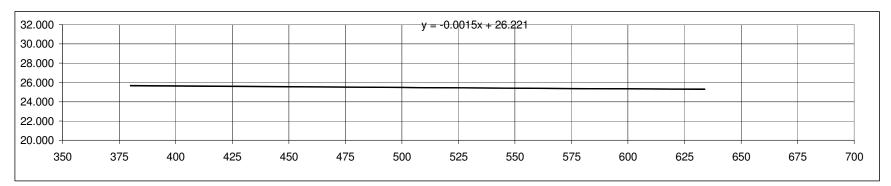

Biotanoo	Level (m)	HFL (m)	Depth (m)		71100		rop main or
(m)	20101 ()	= (,	Boptin (iii)	(m)	(sqm)	(m)	flow (m)
-15	30.967	30.965					
-12	29.365	30.965	1.600				
-9	29.013	30.965	1.952	1.776	5.328	3.021	3.000
-6	28.905	30.965	2.060	2.006	6.018	3.002	3.000
-3	26.43	30.965	4.535	3.298	9.893	3.889	3.000
0	26.408	30.965	4.557	4.546	13.638	3.000	3.000
3	26.386	30.965	4.579	4.568	13.704	3.000	3.000
6	28.409	30.965	2.556	3.568	10.703	3.618	3.000
9	28.819	30.965	2.146	2.351	7.053	3.028	3.000
12	29.134	30.965	1.831	1.989	5.966	3.016	3.000
15	30.972	30.965					
Total					72.30	25.57	24.00



Cross-sectional area of nallah at d/s of proposed bridge is as follows:

Distance from proposed bridge	300 m
Longitudinal slope d/s side	0.0015
HFL at this location	30.485 m


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)
-15	30.832	30.485		,	(09)	(,	
-12	29.856	30.485	0.629				
-9	27.958	30.485	2.527	1.578	4.734	3.550	3.000
-6	27.95	30.485	2.535	2.531	7.593	3.000	3.000
-3	26.356	30.485	4.129	3.332	9.996	3.397	3.000
0	25.456	30.485	5.029	4.579	13.737	3.132	3.000
3	25.456	30.485	5.029	5.029	15.087	3.000	3.000
6	26.97	30.485	3.515	4.272	12.816	3.360	3.000
9	27.047	30.485	3.438	3.477	10.430	3.001	3.000
12	29.659	30.485	0.826	2.132	6.396	3.978	3.000
15	30.782	30.485					
Total					80.79	26.42	24.00



L-Section of Nallah at Existing Bridge

L-Section of Nallah at U/S

L-Section of Nallah at D/S

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour d Maximum scour le				89.43 cum/sec 30.935 m 26.230 m 6.61 m 24.323 m
Curtain wall shall be provided b Bed level Scour depth below bed	elow maximun	n scour level		26.23 m 1.91 m
Minimum depth of curtan wall a	s per IRC:89-1	997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.5 m 3.0 m
Rigid apron as per IRC:89-199	7		u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 3.81 3.81	Provided 4.0 m 6.0 m

CHAPTER-4

BRIDGE AT CH:18/400

3. Hydraulic calculations for Minor Bridge of road Bhadrak - Anandpur

1	Name of the Nala:	Malisahi Polo			
1	Road No.:	S.H. No 53			
	G.T S No :	73K			
	Nearest Village :	Malisahi			
	RD :	Km.18/400			
	Latitude	86 ⁰ 23 '00"			
	Longitude	21 ⁰ 08'00"			
	Sub Zone	3(d)			
		0(0)			
2	Discharge by Dicken	s Formula			
	Discharge as per Dicke			(Refer I.R.C.SP-13, Page 7)	
		$Q = CM^{3/4}$			
		C=14-19 when	re annual rainfa	ll is more than 120 cm	
		=11-14 whe	re annual rainfa	all is 60-120 cm	
		=22 in weste	ern Ghats		
		C adopted	(Since Rain fa	all is more than 120 cm)	19
		M = Catchmer	nt area		0.450 sqkm
		Q =			10.44 cum/s
•	Dischause hu Dation				
3	Discharge by Rationa Catchment area	ai Formula		0.450 sqkm	45.00 hectares
	Length of path from top	osheet (L)		0.400 SqKm	1.500 km
	Difference in levels from				10 m
	(Ref: Index map)				10 11
	Maximum rain fall (F)	(Ref : SUG of	Taradadiha na	di)	150.93 mm
	Duaration of storm (T)	(110.1000.00			4 hrs
	One hour rainfall (Io)		lo = (F/T)*(T+	-1)/(1+1)	94.33 mm/hr
		I.R.C.SP-13, Pa		$tc = (0.87*L^3/H)^{0.385}$	0.62 hrs.
	Critical rainfall intensity				116.18 mm/hr
	Discharge Q=0.028 * F	P*f* A* Ic			
	P = (for loss)	am, lightly cultiva	ated or covered)	0.400
	f =				1.00
	A =				45.00 Hectares
	lc =				11.618 cm/hr
	Q =				5.86 cum/sec
4	Design Discharge		(Defer D.C	CD 10, Dece 01)	
4	Design Discharge	Formula		SP-13, Page 21)	10.44 cum/sec
	Discharge by Dicken's Discharge by Rational				5.86 cum/sec
	Maximum discharge	l'Ulliula			10.44 cum/sec
	Next maximum dischar	ne			5.86 cum/sec
	Hence design discharg	-			10.44 cum/sec
5	Linear Water Way				
	Regime width			$W = 4.8Q^{1/2}$	15.51 m
	(Refer IRC:5-1998, Cla	ause 104.3 or SI	P-13, Page 23)		

6	Scour depth	
	Increase in design discharge, as per IRC:78-2000, clause 703.1.1	30%
	Increased design discharge	13.57 cum/sec
	Mean depth of scour, as per IRC:78-2000, Clause 703.2	
	$d_{sf} = 1.34 ({D_b}^2/K_{sf})^{1/3}$	
	Db = Design discharge per metre width	0.88 cum/sec/m
	K _{sf} = Silt factor	2.25
	d _{sf} =	0.94 m
	Maximum scour depth, as per IRC:78-2000, Clause 703.3	
	For Pier 2 d _{sf}	1.87 m
	For Abutment 1.27 d _{sf}	1.19 m
7	Span arrangement	
	In proposed span arrangement, double cell of 3.0 m has been proposed	6.00 m
	with bed protection.	
8	Scour depth	
	Increase in design discharge, as per IRC:78-2000, Clause 703.1.1	30%
	Increased design discharge	2.93 cum/sec
	Mean depth of scour, as per IRC:78-2000, Clause 703.2	
	$d_{sf} = 1.34 ({D_b}^2/K_{sf})^{1/3}$	
	Db = Design discharge per metre width	0.49 cum/sec/m
	K _{sf} = Silt factor	2.09
	d _{sf} =	0.65
	Maximum scour depth, as per IRC:78-2000, Clause 703.3	
	for Pier 2 d _{sf}	1.30 m
	for Abutment 1.27 d _{sf}	0.82 m
9	Vertical Clearance	
	Vertical clearance for opening of high level bridge, from the lowest point	
	0f deck structure (Ref.I.R.C5-1998,Clause-106.2.1,Page-16)	0.6 m
10	Deck level	
	HFL at existing bridge site	31.750 m
	Minimum vertical clearance (Table 12.1 of SP-13)	0.600 m
	Depth of super structure including camber	0.470 m
	Wearing coat	0.056 m
	Minimum deck level required as per hydraulic conditions	32.876 m
	Deck level of the existing bridge	31.200 m
	Minimum deck level proposed	32.876 m
10	HFL at existing bridge site Minimum vertical clearance (Table 12.1 of SP-13) Depth of super structure including camber	0.600 m 0.470 m
	0 0	
		02.010

As per the proposed allignment, the formation level of bridge has been kept as 32.925 m

Floor Protection Works

As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour de Maximum scour lev				10.44 cum/sec 31.750 m 29.140 m 1.30 m 30.451 m
Curtain wall shall be provided be Bed level Scour depth below bed	elow maximur	m scour level		29.14 m 0.00 m
Minimum depth of curtan wall as	per IRC:89-	1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.0 m 2.5 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 0.00 0.00	Provided 3.0 m 6.0 m

CHAPTER-5

BRIDGE AT CH:19/300

The Bridge at chainage 19/300 Banta Canal, existing Span (2x6.3)m is an irrigation Canal.So there is no need of Hydrology.The span arrangement is same existing.

CHAPTER-6

BRIDGE AT CH:30/950

Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project The Bridge at chainage 30/950 Hadagoda Canal, existing Span (1x5.5)m is a Syphone Aquatacte. So there is no need of Hydrology.

CHAPTER-7

BRIDGES AT CH:37/600,37/700,37/850,38/010 & 38/200

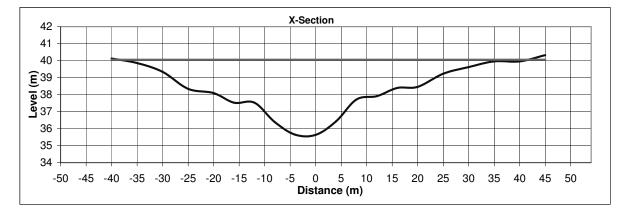
Consultancy Services for Feasibility Study and Detailed Project Preparation for Proposed Orissa State Road Project The Bridges at Ch.37/600,37/700,37/850,38/010 & 38/200 are known as Charnallah, Including 5 No of bridges, the total vent way of all bridges is 40.1 m (7.6+7.6+7.6+7.3+10.0). As per site condition these bridges do not seem to be defined channel, however Bridge at Ch.38/010 seem to be defined.

These bridges carry water from a Catchments area of 26.3 Sqkm and vent way of these Bridge has been suggested on the basis of rational method and Dicken's method for all the Bridge combined.

11. Hydraulic calculations for Minor Bridge of road Bhadrak-Anandpur

1	General details				
	Name of the Nala :	Charinalia			
	Road No.:	S.H - 53			
	G.T S No :	73K			
	Nearest Village :	Fakirpur			
	RD :	Km.38.010			
	Latitude	21 ⁰ 13' 00"			
	Longitude	86 ⁰ 12' 00''			
	Sub-Zone	3(d)			
2	Discharge by Mannin	ng's Formula			
	HFL at bridge site				40.055 m
	Cross-section of the	stream at diff	ferent locations are as	follows	
	Discharge by Mannin	ng's Formula a	at U/S location		
	Cross-sectional area of	of flow			130.92 sqm
	Width of flow				68.00 m
	Wetted perimeter perp	endicular to di	rection of flow		69.81 m
	Hydraulic mean radius	8 R = A/P			1.88 m
	Longitudinal slope as o	calculated			0.0055 m per m
	Velocity by Manning's				
	V = 1/n R ²	^{2/3} S ^{1/2}	(refer SP-13, page 17)		
	For sluugi	ish type bed (T	able 5.1)		
	n =				0.06
	Velocity V	′ =			1.880 m/s
	Discharge Q = A*V				246.10 cum/s
	Discharge by Mannin	-	at existing location		
	Cross-sectional area o	of flow			144.81 sqm
	Width of flow				75.00 m
	Wetted perimeter perp		rection of flow		75.80 m
	Hydraulic mean radius				1.91 m
	Longitudinal slope as o				0.0051 m per m
	Velocity by Manning's				
	V = 1/n R ²	-	(refer SP-13, page 17)		
	For sluugi	ish type bed (T	able 5.1)		
	n =				0.06
	Velocity V	/ =			1.833 m/s
	Discharge Q = A*V				265.37 cum/s
	Discharge by Mannin	-	at D/S location		
	Cross-sectional area o	of flow			182.07 sqm
	Width of flow				75.00 m

Wat	ted perimeter perpendicular to di	irection of flow	75.96 m
	raulic mean radius R = A/P		2.40 m
-	gitudinal slope as calculated		0.0040 m per m
	icity by Manning's formula		0.0040 m per m
Veid	$V=1/n R^{2/3} S^{1/2}$	(refer CD 12, page 17)	
		(refer SP-13, page 17)	
	For sluugish type bed (T	able 5.1)	0.00
	n =		0.06
5.	Velocity V =		1.888 m/s
	harge Q = A*V		343.71 cum/s
	hydrological calculations has be nstream side and near proposed	en done at three sections I.e. at upstream side,	
		-	
-		wnstream side and Existing bridge location.	
Hen	ce the design discharge may be	taken as 265.37 cum/s	
3 Disc	charge by Dicken's Formula		
	harge as per Dicken's formula	(refer SP-13, page 7)	
Dioc	$Q = CM^{3/4}$		
	C = 14-19 w	here annual rainfall is more than 120 cm	
	= 11-14 wł	nere annual rainfall is 60-120 cm	
	= 22 in we	stern Ghats	
	C adopted	(Since Rainfall is more than 120 cm)	19
	M = Catchm	. ,	26.300 sqkm
	Q =		220.66 cum/s
4 Disc	charge by Rational Formula		
Cato	chment area	26.300 sqkm	2630.00 hectares
Lenç	oth of path from toposheet (L)		6.750 km
Diffe	erence in levels from toposheet (H)	120 m
(Ref	: Index map)		
Max	imum rain fall (F)	(Ref.SUG of Taradadiha River)	150.93 mm
Dua	ration of storm (T)		4 hrs
One	hour rainfall (lo)	$Io = (F/T)^{*}(T+1)/(1+1)$	94.33 mm/hr
Time	e of concentration (SP-13, page	12) $tc = (0.87*L^3/H)^{0.385}$	1.36 hrs.
Criti	cal rainfall intensity Ic = Io*(2/(1-	+tc)	79.88 mm/hr
Disc	harge Q = 0.028 * P*f* A* Ic		
	P = (for loam, lightly cul	tivated or covered)	0.400
	f =		1.00
	A =		2630.00 Hectares
	lc =		7.988 cm/hr
	Q =		235.309 cum/sec
	ign Discharge	(Refer SP-13, page 21)	
	harge by Manning's Formula		265.37 cum/sec
Disc	harge by Dicken's Formula		220.66 cum/sec
Disc	harge by Rational Formula		235.31 cum/sec

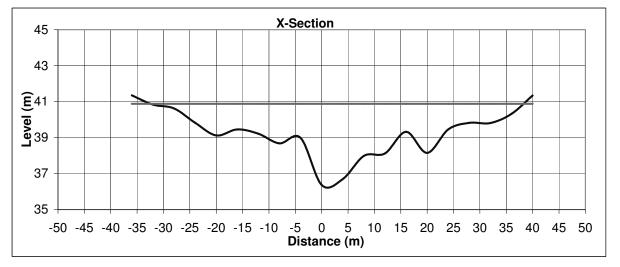

	Maximum discharge Next maximum discharge	265.37 cum/sec 220.66 cum/sec
	The difference is within 50% of the next maximum discharge Hence design discharge	265.37 cum/sec
6	Water Way	
	Regime width W = 4.8Q ^{1/2} (Refer IRC:5-1998, cl 104.3 or SP-13, page 23)	78.19 m
	Provide Clear span (1x7.6+1x7.6+1x7.6+1x7.3+1x10.0)	40 m
7	Scour depth	
	Increase in design discharge, as per IRC:78-2000, cl 703.1.1	30%
	Increased design discharge	344.97 cum/sec
	Mean depth of scour, as per IRC:78-2000, cl 703.2 $d_{sf} = 1.34 \ (D_{b}{}^{2}\!/K_{sf})^{1/3}$	
	Db = Design discharge per metre width K _{sf} = Silt factor	4.41 cum/sec/m
	Silt factor has been calculated according to data collected from site Mean depth of scour, d_{sf} =	1.0 (Assumed) 3.60 m
	Maximum scour depth, as per IRC:78-2000, cl 703.3	
	for Abutment	4.58 m
8	Deck level	
	HFL at proposed bridge site	39.090 m
	Minimum vertical clearance (Table 12.1 of SP-13)	0.900 m
	Depth of super structure	0.600 m
	Wearing coat	0.056 m
	Minimum deck level required as per hydraulic conditions	40.646 m
	Deck level of the existing bridge	40.650 m
	Minimum deck level proposed	40.650 m

Cross-sectional area of nallah at proposed bridge site is as follows:

HFL at this	location
-------------	----------

40.055 m

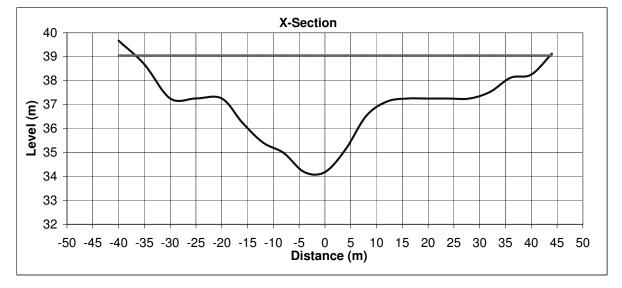
Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)	
-40	40.125	40.055						
-35	39.86	40.055	0.195					
-30	39.342	40.055	0.713	0.454	2.270	5.027	5.000	
-25	38.345	40.055	1.710	1.212	6.058	5.098	5.000	
-20	38.093	40.055	1.962	1.836	9.180	5.006	5.000	
-16	37.531	40.055	2.524	2.243	8.972	4.039	4.000	
-12	37.531	40.055	2.524	2.524 3.097	.097 12.388	4.000	4.000 4.000 4.000 4.000 4.000	
-8	36.385	40.055	3.670			4.161		
-4	35.649	40.055	4.406	4.038		4.067 4.000 4.078		
0	35.638	40.055	4.417	4.412	17.646			
4	36.432	40.055	3.623	4.020	16.080			
8	37.72	40.055	2.335	2.979	11.916	4.202	4.000	
12	37.915	40.055	2.140	2.238	8.950	4.005	4.000	
16	38.393	40.055	1.662	1.901	7.604	4.028	4.000	
20	38.463	40.055	1.592	1.627	6.508	4.001	4.000	
25	39.232	40.055	0.823	1.208	6.038	5.059	5.000	
30	39.625	40.055	0.430	0.627	3.133	5.015	5.000	
35	39.956	40.055	0.099	0.264	1.322	5.011	5.000	
40	39.956	40.055	0.099	0.099	0.495	5.000	5.000	
45	40.325	40.055						
Total					144.81	75.80	75.00	

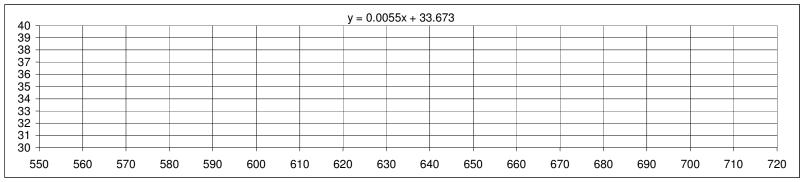


Cross-sectional area of nallah at u/s of the proposed bridge is as follows:

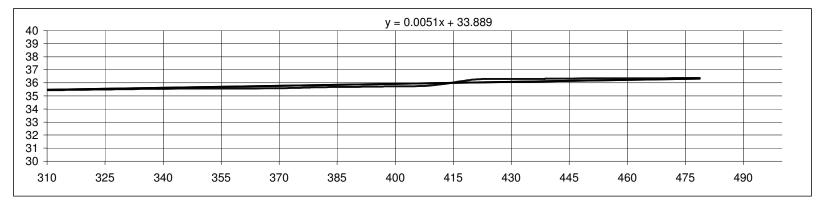
Distance from proposed bridge Longitudinal slope u/s side HFL at this location

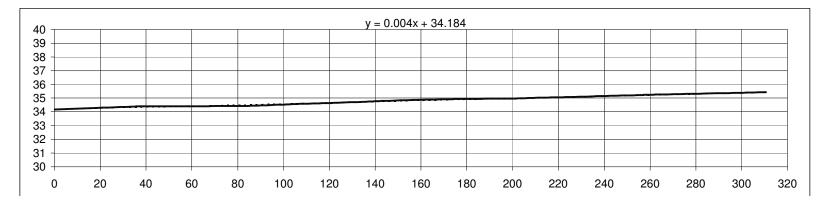
150	m
0.0055	
40.880	m


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)	
-36	41.352	40.880						
-32	40.835	40.880	0.045					
-28	40.625	40.880	0.255	0.150	0.600	4.006	4.000	
-24	39.825	40.880	1.055	0.655	2.620	4.079	4.000	
-20	39.125	40.880	1.755	1.405	5.620	4.061	4.000	
-16	39.456	40.880	1.424	1.590	6.358 6.178 7.720 8.180 12.822	4.014	4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000	
-12	39.215	40.880	1.665	1.545		4.007		
-8	38.685	40.880	2.195	1.930		4.035 4.011 4.782 4.014 4.202 4.003		
-4	38.985	40.880	1.895	2.045				
0	36.364	40.880	4.516	3.206				
4	36.697	40.880	4.183	4.350	17.398			
8	37.983	40.880	2.897	3.540	14.160 11.304			
12	38.125	40.880	2.755	2.826				
16	39.324	40.880	1.556	2.156	8.622	4.176	4.000	
20	38.152	40.880	2.728	2.142	8.568	4.168	4.000	
24	39.456	40.880	1.424	2.076	8.304	4.207	4.000	
28	39.82	40.880	1.060	1.242	4.968	4.017	4.000	
32	39.812	40.880	1.068	1.064	4.256	4.000	4.000	
36	40.325	40.880	0.555	0.812	3.246	4.033	4.000	
40	41.342	40.880						
Total					130.92	69.81	68.00	


Cross-sectional area of nallah at d/s of proposed bridge is as follows:

Distance from proposed bridge	250 m
Longitudinal slope d/s side	0.004
HFL at this location	39.055 m


Distance (m)	Level (m)	HFL (m)	Depth (m)	Av depth (m)	Area (sqm)	Perimeter (m)	Top width of flow (m)
-40	39.666	39.055					
-35	38.677	39.055	0.378				
-30	37.254	39.055	1.801	1.090	5.448	5.199	5.000
-25	37.254	39.055	1.801	1.801	9.005	5.000	5.000
-20	37.254	39.055	1.801	1.801	9.005	5.000	5.000
-16	36.245	39.055	2.810	2.306	9.222	4.125	4.000
-12	35.415	39.055	3.640	3.225	12.900	4.085	4.000
-8	34.981	39.055	4.074	3.857	15.428	4.023	4.000 4.000 4.000 4.000 4.000 4.000
-4	34.181	39.055	4.874	4.474	17.896	4.079 4.000 4.110 4.238 4.045	
0	34.181	39.055	4.874	4.874	19.496		
4	35.125	39.055	3.930	4.402	17.608		
8	36.524	39.055	2.531	3.231	12.922		
12	37.125	39.055	1.930	2.231	8.922		
16	37.25	39.055	1.805	1.868	7.470	4.002	4.000
20	37.25	39.055	1.805	1.805	7.220	4.000	4.000
24	37.25	39.055	1.805	1.805	7.220	4.000	4.000
28	37.25	39.055	1.805	1.805	7.220	4.000	4.000
32	37.524	39.055	1.531	1.668	6.672	4.009	4.000
36	38.12	39.055 0.935	1.233	4.932	4.044	4.000	
40	38.25	39.055	0.805	0.870	3.480	4.002	4.000
44	39.125	39.055					
Total					182.07	75.96	75.00


L-Section of Nallah at U/S

L-Section of Nallah at Existing Bridge

L-Section of Nallah at D/S

Floor Protection Works

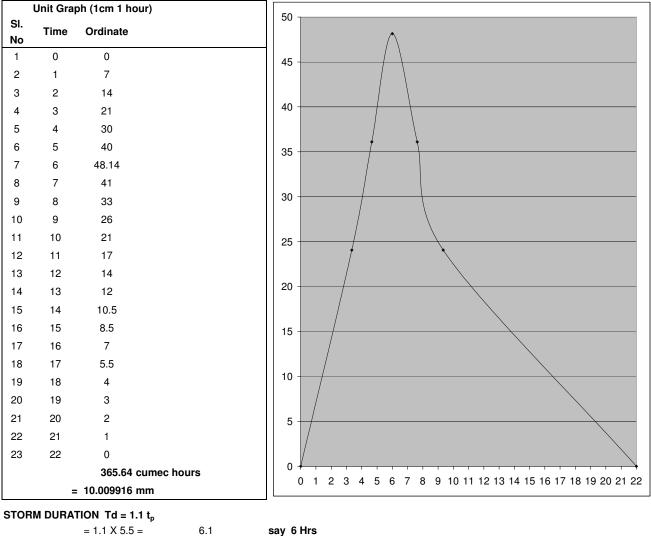
As per hydrology report, the hydraulic parameters are as follows

Design discharge HFL Bed level Maximum scour de Maximum scour lev		265.37 cum/sec 39.090 m 36.240 m 4.58 m 34.512 m		
Curtain wall shall be provided be Bed level Scour depth below bed	low maximur	n scour level		36.24 m 1.73 m
Minimum depth of curtan wall as	per IRC:89-1	1997	u/s d/s	2 m 2.5 m
Provide depth of curtain wall			u/s d/s	2.5 m 3.0 m
Rigid apron as per IRC:89-1997			u/s d/s	3.0 m 5.0 m
Flexible apron	u/s d/s	As per IRC:89 3.0 6.0	2xscour depth 3.46 3.46	Provided 3.5 m 6.0 m

APPENDIX

ORISSA STATE ROAD PROJECT HYDROLOGICAL STUDY

Road	: Bhadrak-Anandpur(S.H-53)
Name of River/Nallah/Stream	: Ghaghara Nadi
Name of nearest Village/Town	:
RD	: 37.600 km
Lattitude	: 86 ⁰ 0'
Longitude	: 21 ⁰ 15'
GT Sheet No.	: 73K


Estimation of slope

S. No.	Reduced Distance Starting from Gauging Site (Point of Study) (kms)	Reduced Levels of River Bed (m)	Length of each Segment L _i (km)	Height Above Datum *(D _i Difference Between the Datum and the ith R.L. (m)	(D _{i-1} + D _i)	L _i (D _{i-1} + D _i) (4) x (6) (m x km)
1	2	3	4	5	6	7
1	0	20	0	0	0	0.00
2	1.35	40	1.35	20	20	27.00
3	11.6	60	10.25	40	60	615.00
4	15.9	80	4.3	60	100	430.00
5	16.65	100	0.75	80	140	105.00
6	17.25	120	0.6	100	180	108.00
7	17.75	140	0.5	120	220	110.00
8	20.25	160	2.5	140	260	650.00
9	20.7	180	0.45	160	300	135.00
10	20.9	200	0.2	180	340	68.00
11	21	220	0.1	200	380	38.00
12	21.05	225	0.05	205	405	20.25
					$\Sigma L_i (D_{i-1} + D_i) =$	2306.25

 $S = \frac{\sum L_{i} (D_{i.1} + D_{i})}{L^{2}} = 5.205 \text{ m/km}$

Synthetic Unitgraph

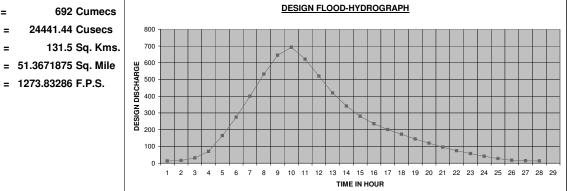
Synthetic Unitgraph	
Catchment area =	131.500 Sq.Km.
L =	21.05 km
Lc =	9.0 km
LxLc/(sqrt(s)) =	83.0394
$t_p = 1.757((L X Lc)/sqrt(S))^{0.261} =$	5.5681 hrs
Say	5.5 hrs
$q_p = 1.260 (tp)^{-0.725} =$	0.36611
$Q_p = Catchment area \times q_p =$	48.1430 cumecs
$W_{50} = 1.974 (q_p)^{-1.104} =$	5.9858 hrs
$W_{75} = 0.961 (q_p)^{-1.125} =$	2.9762 hrs
$W_{R50} = 1.150 (q_p)^{-0.829} =$	2.6453 hrs
$W_{R75} = 0.527 (q_p)^{-0.932} =$	1.3444 hrs
$Q_{50} = 0.5 \times Q_p =$	24.0715 cumecs
$Q_{75} = 0.75 \times Q_p =$	36.1073 cumecs
$T_B = 5.411 (tp)^{0.826} =$	22.1216 hrs
Storm duration, $t_r =$	1 Hour

say 6 Hrs

From Plate 8c , the 50 -Year return period , 6 hour point rainfall = 180 mm .

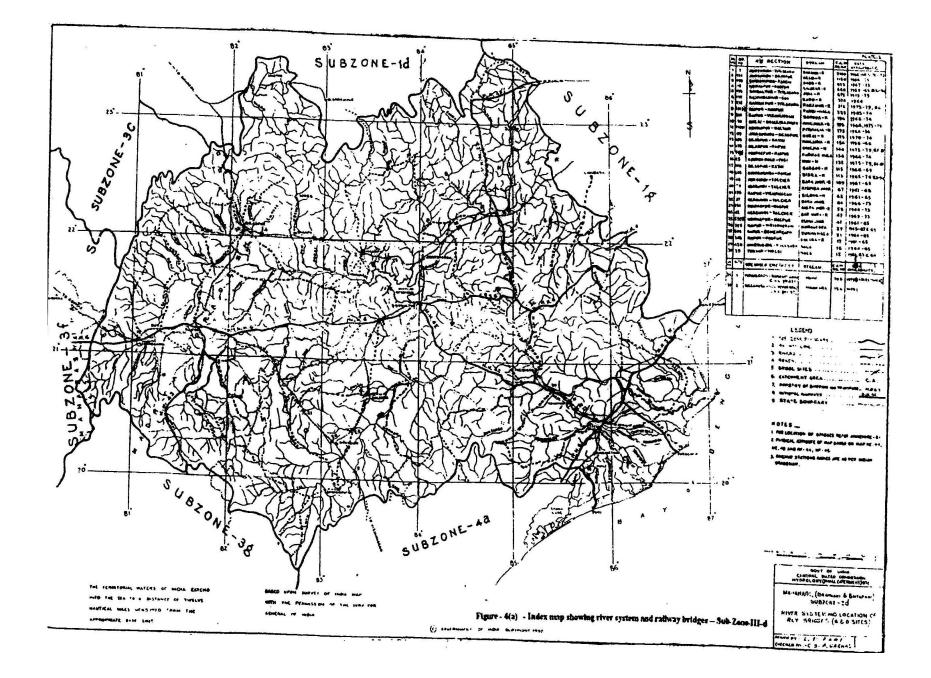
Areal Rainfall = 90 % of Point Rainfall Ref: Para 4.4

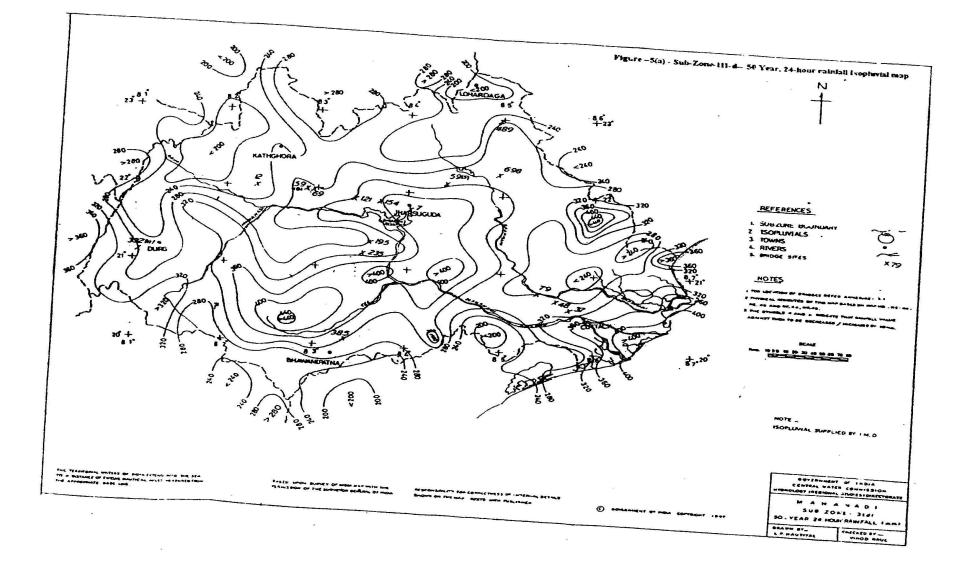
= 162.00


Loss rate = 0.26 cm / hour

Cumulative percentage

Hours	Storm Percentage	Storm Rainfall	Excess Rainfall	Incremental R.E.
0	0	0	0	0
1	47	76.14	75.88	75.88
2	68	110.16	109.64	33.76
3	80	129.6	128.82	19.18
4	91	147.42	146.38	17.56
5	97	157.14	155.84	9.46
6	100	162	160.44	4.6


Jnit G	Graph (1 c	m 1 hour)	R.E.	R.E.							_		
SI.	Time	Ordinata	Peak to	Reverse							Base Flow	Design Flood Hydrograph	
No	Time	Ordinate	Peak	order	0.46	1.756	3.376	7.588	1.918	0.946	1100	nyarograph	
1	0	0			0						13.15	13.15	
2	1	7			3.22	0					13.15	16.37	
3	2	14			6.44	12.292	0				13.15	31.882	
4	3	21			9.66	24.584	23.632	0			13.15	71.026	
5	4	30	9.46	4.6	13.8	36.876	47.264	53.116	0		13.15	164.206	
6	5	40	19.18	17.56	18.4	52.68	70.896	106.232	13.426	0	13.15	274.784	
7	6	48.14	75.88	33.76	22.1444	70.24	101.28	159.348	26.852	6.622	13.15	399.636	
8	7	41	33.76	75.88	18.86	84.5338	135.04	227.64	40.278	13.244	13.15	532.746	
9	8	33	17.56	19.18	15.18	71.996	162.521	303.52	57.54	19.866	13.15	643.773	
10	9	26	4.6	9.46	11.96	57.948	138.416	365.286	76.72	28.38	13.15	691.860	
11	10	21			9.66	45.656	111.408	311.108	92.3325	37.84	13.15	621.155	
12	11	17			7.82	36.876	87.776	250.404	78.638	45.5404	13.15	520.204	
13	12	14			6.44	29.852	70.896	197.288	63.294	38.786	13.15	419.706	
14	13	12			5.52	24.584	57.392	159.348	49.868	31.218	13.15	341.08	
15	14	10.5			4.83	21.072	47.264	129.00	40.278	24.596	13.15	280.186	
16	15	8.5			3.91	18.438	40.512	106.232	32.606	19.866	13.15	234.714	
17	16	7			3.22	14.926	35.448	91.056	26.852	16.082	13.15	200.734	
18	17	5.5			2.53	12.292	28.696	79.674	23.016	13.244	13.15	172.602	
19	18	4			1.84	9.658	23.632	64.498	20.139	11.352	13.15	144.269	
20	19	3			1.38	7.024	18.568	53.116	16.303	9.933	13.15	119.474	
21	20	2			0.92	5.268	13.504	41.734	13.426	8.041	13.15	96.043	
22	21	1			0.46	3.512	10.128	30.352	10.549	6.622	13.15	74.773	
23	22	0			0	1.756	6.752	22.764	7.672	5.203	13.15	57.297	
						0	3.376	15.176	5.754	3.784	13.15	41.24	
							0	7.588	3.836	2.838	13.15	27.412	
								0	1.918	1.892	13.15	16.96	
									0	0.946	13.15	14.096	
										0	13.15	13.15	


Estimation of Design Flood Hydrograph

692 Cumecs Qp =

- =
 - C.A. =
- Dicken's C = 1273.83286 F.P.S.

Bankajari Sikabada Dubaka 200 gana SAINTOSHPUR R F Jordanunda 200
200 Kodobohall (273 A Sarrouhpur Pahau) (273 A
Buriskhala a fantashpur a fanta
1830 la unidade de la companya de la
SATKOSIA R R ALALA RE Guppol Subdarpul Subdarpul Subdarpul
A N. 276 A NPO Bakhara Saundia S54 Bota - B Banianburk PO Manulpankhal PO Manulpankhal - PO Nuchhipur - Saundia PO Sabler - B
Shallamento Solang PO to BM 467 Solarg as PO Director as PO Director and PO Di
Balardimpur Pad CHATSNIAACIA - Sobindopur Amije C Gorasango PO Mighour Mighour - Mighour - Migho
Kendopur PO Machael PO Andrahol PO And
Banda PO Banda Giagen
Dhobari Po Ganhamdhgorg Alati Po Haves Po Po Barbandropur Po B
Rapagundi P Rapadi Rapa
Kabati N Rampho Biruanparde

ORISSA STATE ROAD PROJECT HYDROLOGICAL STUDY

Road	: Bhadrak-Godabhanga Gate
Name of River/Nallah/Stream	: Taradadiha Nadi
Name of nearest Village/Town	: Sarangi
RD	: 50/950km
Lattitude	: 86 ⁰ 9'
Longitude	: 21 ⁰ 13'
GT Sheet No.	: 73 K/4

Estimation of slope

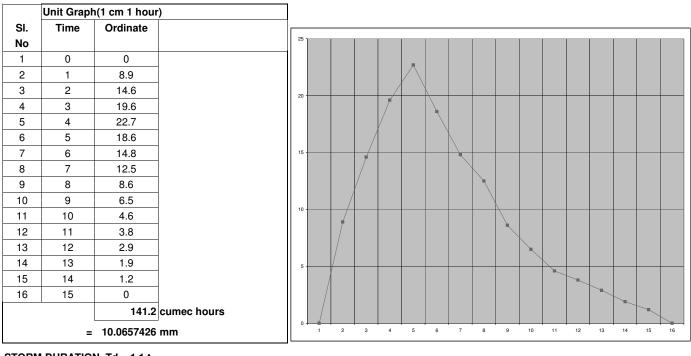
S. No.	Reduced Distance Starting from Gauging Site (Point of Study) (kms)	Gauging Site Levels of (Point of Study) River Bed		Height Above Datum *(D _i Difference Between the Datum and the ith R.L. (m)	(D _{i-1} + D _i)	L _i (D _{i-1} + D _i) (4) x (6) (m x km)	
1	2	3	4	5	6	7	
1	6.1	30	0	0	0	0.00	
2	8.3	60	2.2	30	30	66.00	
3	8.9	80	0.6	50	80	48.00	
4	9.1	100	0.2	70	120	24.00	
5	11.2	120	2.1	90	160	336.00	
6	11.7	140	0.5	110	200	100.00	
7	13.2	160	1.5	130	240	360.00	
8	15.7	180	2.5	150	280	700.00	
9	16.4	200	0.7	170	320	224.00	
10	17	220 0.6 190		190	360	216.00	
11	19.5	240	2.5	210	400	1000.00	
					$\Sigma L_i (D_{i-1} + D_i) =$	3074.00	

 $S = \Sigma L_i (D_{i-1} + D_i) = 8.084 \text{ m/km}$ L²

-

 $T_B = 5.411 (tp)^{0.826} =$

Storm duration ,t_r =


 $Tm = t_p + t_r/2 = 3.5 + 1/2 =$

50.5 Sq.Km. 19.5 km 8.5 km 58.30 5.08 hrs 3.5 hrs 0.51 25.66 cumecs 4.17 hrs 2.06 hrs 2.02 hrs 0.99 hrs 12.83 cumecs 19.24 cumecs

15.23 hrs

1 Hour

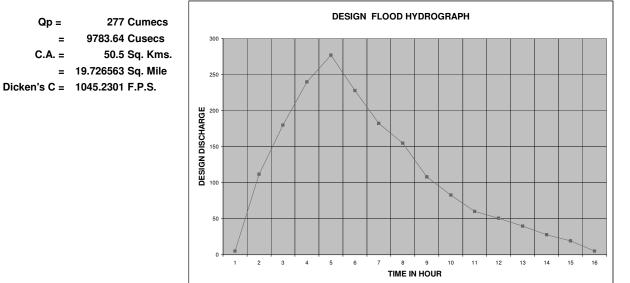
4 hrs

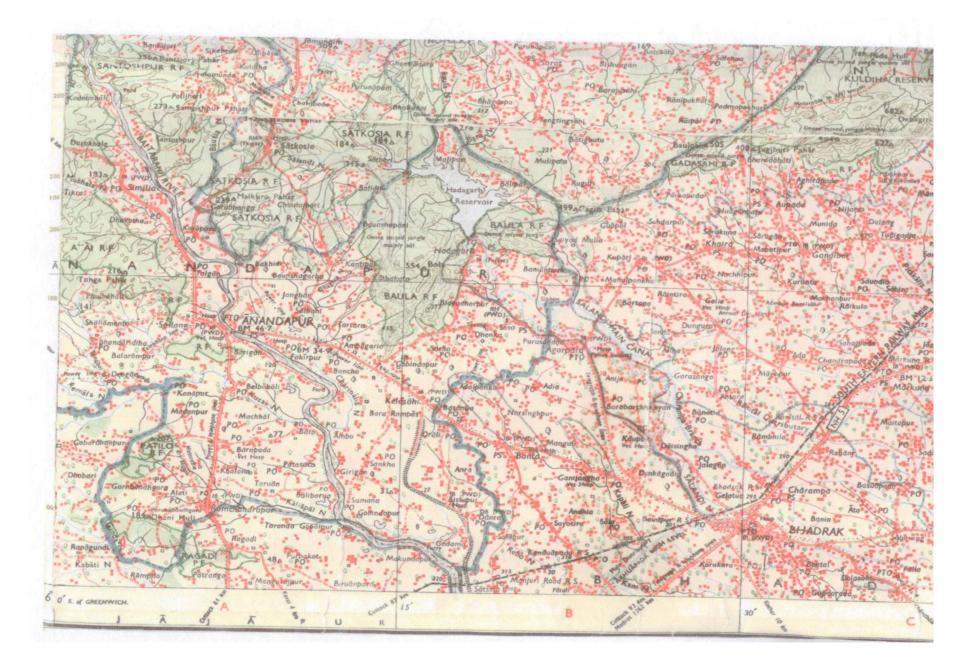
STORM DURATION Td = $1.1 t_p$

= 1.1 X 3.5 =

say 4 Hrs

From Plate 9(a) , the 50 -Year return period , 24 hour point rainfall = 240 mm . Areal Bainfall = 65 % of Point Bainfall 65			
Areal Rainfall = 65 % of Point Rainfall	65	156	mm
Areal reduction factor= 96.75 %	96.75	150.93	mm


Loss rate = 0.26 cm / hour Cumulative percentage 2.6 mm /hour


3.9

Hours	Storm	Storm	Excess	Incremental	
	Percentage	Rainfall	Rainfall	R.E.	
0	0	0	0	0	
1	70	105.65	103.05	103.05	
2	87	131.31	126.11	23.06	
3	96	144.89	137.09	10.98	
4	100	150.93	140.53	3.44	

Unit Gr	aph(1 cm 1	hour)	R.E. R.E.							Design		
SI.	Time	Ordinate	Peak to	Reverse							Base Flow	Flood Hydrograph
No			peak	order	0.344	1.098	10.305	0.2306				
1	0	0			0	0	0	0			5.05	5.05
2	1	8.9			3.06	9.77	91.71	2.05			5.05	111.65
3	2	14.6			5.02	16.03	150.45	3.37			5.05	179.92
4	3	19.6	23.06	3.44	6.74	21.52	201.98	4.52			5.05	239.81
5	4	22.7	103.05	10.98	7.81	24.92	233.92	5.23			5.05	276.94
6	5	18.6	10.98	103.05	6.40	20.42	191.67	4.29			5.05	227.83
7	6	14.8	3.44	23.06	5.09	16.25	152.51	3.41			5.05	182.32
8	7	12.5			4.30	13.73	128.81	2.88			5.05	154.77
9	8	8.6			2.96	9.44	88.62	1.98			5.05	108.06
10	9	6.5			2.24	7.14	66.98	1.50			5.05	82.90
11	10	4.6			1.58	5.05	47.40	1.06			5.05	60.15
12	11	3.8			1.31	4.17	39.16	0.88			5.05	50.56
13	12	2.9			1.00	3.18	29.88	0.67			5.05	39.79
14	13	1.9			0.65	2.09	19.58	0.44			5.05	27.81
15	14	1.2			0.41	1.32	12.37	0.28			5.05	19.42
16	15	0			0	0	0	0			5.05	5.05

Estimation of Design Flood Hydrograph

