GOVERNMENT OF ORISSA

WORKS DEPARTMENT

ORISSA STATE ROAD PROJECT

CONSULTING Engineers Group Ltd. Jaipur E-12, Moji Colony, Malviya Nagar, Jaipur, Raj. **R** - 91-141-2520899, Tolofay, 91-141-2521348

Telefax +91-141-2520899, Telefax +91-141-2521348
E-mail : <u>ceg@cegindia.com</u> URL : <u>www.cegindia.com</u>

Sl.No.	Title	Pages
1.	Introduction	1-9
2.	Design of Return Wall i. 2.0m Height ii. 3.0m Height	1-5 1-5
	iii. 4.0m Heightiv. 5.0m Heightv. 6.0m Height	1-5 1-5 1-5

INDEX

INTRODUCTION

INTRODUCTION

This report presents the design of culverts.

In **Bhadrak – Chandbali** stretch there are 52 Nos. of culverts and 20 Nos. of culverts has been proposed as additional as per site condition.

In **Bhadrak** – **Anandpur** stretch there are 99 Nos. of culverts and 7 Nos. of culverts has been introduced as additional.

The total No of culverts recommended has been presented in the subsequent pages for Bhadrak – Chandbali & Bhadrak – Anandpur stretches.

The culverts have been categorized on the basis of detailed inventory and condition survey, hydrological study, horizontal & vertical profile of highway.

The following criterion has been taken while deciding the culverts:

- i. The width of culvert shall be 12.0m
- ii. NP-3/NP-4 pipe culverts in good condition and hydrologically adequate shall be retained
- iii. Slab culverts structurally in good condition and hydrologically adequate having width less than 10.0m shall be widened as per approved alignment.
- iv. All arch type culverts shall be reconstructed.
- v. All new pipe culverts shall have minimum dia. of 1.0m and box culverts of minimum span 2.0m and height 1.5m.
- vi. RR stone masonry culverts in good condition has been retained if horizontal & vertical profile permits.
- vii. Additional culverts as per site investigation has been identified and included in this report.

On the basis of above, all culverts in this stretch lies the following category :

Summary of Culverts in the stretch Bhadrak – Chandbali

Type of Culvert	Nos.
Culverts Widened	
Slab widening	3
Culverts Replaced	
New Single Box of 1/22/0	33
New Single Box of 1/23/0	8
New Single Box of 1/33/0	1
New Single Box of 1/34/0	1
New Single Box of 1/43/0	3
New Single Box of 1/63/0	1
New Single Box of 1/64/0	1
Additional Culverts proposed	
Single Cell Box of 1/23/0	1
New Single Box of 1/43/0	14
New Single Box of 1/44/0	5
Total	71

Type of Culvert	Nos.
Culverts Widened	
Pipe extension	12
Culverts Replaced	
New Single Pipe	13
New Double Pipe	22
New Single Box of 1/22/0	15
New Single Box of 1/23/0	10
New Single Box of 1/33/0	10
New Single Box of 1/34/0	7
New Single Box of 1/43/0	3
New Single Box of 1/44/0	2
New Single Box of 1/63/0	1
Additional Culverts proposed	
Single Cell Box of 1/22/0	1
Single Cell Box of 1/23/0	3
Single Cell Box of 1/34/0	3
Total	102

Summary of Culverts in the stretch Bhadrak – Anandpur

The drawings of Pipe Culverts for height of fill from 0.6 to 4.0m has been taken from SP-13.For Box Culverts with different clear heights MOST Standard Drawings has been taken.

Bed levels, Formation levels, Super-elevation/Camber has been taken from highway plan & profile drawings and data has been analysed by using Microsoft Excel Sheet.

In Box Culverts, the retaining wall is kept along the road instead of splayed Wing Wall mentioned in MOST Drawings. These Walls has been designed by using Microsoft Excel Sheet for the height varying from 2.0 to 6.0m.

Reference codes: IRC - 6 - 2000IRC - 21 - 2000IRC - 78 - 2000

S. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing	Proposed Span	Type of Proposed	Remarks
1	-	0/0	-	Culvert -	Arrangement 1/23/0	Culvert RCC Box	Additional structure
2	2/500	2/507	1 x 3.0	Slab	-	-	To be widened
3	2/800	2/865	1 x 3.0	Slab	-	-	To be widened
4	4/300	4/350	2 x 1.0	Pipe	1/23/0	RCC Box	Replaced due to poor condition
5	4/900	4/935	1 x 2.0	Arch	1/23/0	RCC Box	Replaced due to poor condition
6	-	5/705	-	-	1/43/0	RCC Box	Additional structure
7	-	5/740	-	-	1/44/0	RCC Box	Additional structure
8	6/990	7/001	1 x 0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
9	7/900	7/927	1 x 0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
10	8/900	8/939	1 x 4.5	Slab	1/64/0	RCC Box	Replaced due to poor condition
11	9/500	9/602	1 x 2.0	Slab	1/23/0	RCC Box	Replaced due to poor condition
12	9/900	9/902	1 x 4.5	Slab	1/63/0	RCC Box	Replaced due to poor condition
13	10/250	10/260	1 x 1.4	Slab	1/22/0	RCC Box	Replaced due to poor condition
14	11/100	11/142	1 x 1.4	Slab	1/23/0	RCC Box	Replaced due to poor condition
15	11/650	11/535	2 x 0.3	Pipe	1/22/0	RCC Box	Replaced due to poor condition
16	12/600	12/397	1 x 0.3	Pipe	1/22/0	RCC Box	Replaced due to poor condition
17	12/900	12/923	1 x 0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
18	13/150	13/132	1 x 1.4	Slab	1/23/0	RCC Box	Replaced due to poor condition
19	14/800	14/791	1 x 0.3	Pipe	1/22/0	RCC Box	Replaced due to poor condition
20	-	15/125	-	-	1/43/0	RCC Box	Additional structure
21	15/600	15/360	1 x 0.3	Pipe	1/22/0	RCC Box	Replaced due to poor condition
22	-	15/425			1/43/0	RCC Box	Additional structure
23	15/700	15/714	1 x 3.2	Slab	1/43/0	RCC Box	Replaced due to poor condition
24	-	15/750	-	-	1/43/0	RCC Box	Additional structure
25	-	15/850	-	-	1/43/0	RCC Box	Additional structure
26	16/500	16/509	1 x 0.6	Pipe	1/23/0	RCC Box	Replaced due to poor condition
27	16/700	16/733	1 x 0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition

Summary of recommended Culverts for the stretch Bhadrak – Chandbali

S. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
28	17/100	17/078	1 x 1.5	Slab	1/22/0	RCC Box	Replaced due to poor condition
29	17/700	17/666	1 x 0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
30	17/900	17/928	1 x 1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
31	18/200	18/195	1 x 1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
32	18/600	18/627	1 x 1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
33	19/100	19/096	1 x 1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
34	19/400	19/367	2 x 1.5	Slab	1/33/0	RCC Box	Replaced due to poor condition
35	19/900	19/888	2 x 2.3	Slab	-	-	To be widened
36	20/100	20/144	1 x 1.4	Slab	1/22/0	RCC Box	Replaced due to poor condition
37	20/200	20/365	1 x 0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition
38	20/700	20/691	1 x 0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition
39	21/050	21/074	1 x 0.45	Pipe	1/22/0	RCC Box	Replaced due to poor condition
40	21/150	21/235	1 x 0.45	Pipe	1/22/0	RCC Box	Replaced due to poor condition
41	21/400	21/490	1 x 0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition
42	21/700	21/829	1 x 1.5	Slab	1/22/0	RCC Box	Replaced due to poor condition
43	22/700	22/570	1 x 0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
44	23/150	23/240	1 x 3.2	Slab	1/43/0	RCC Box	Replaced due to poor condition
45	24/050	24/096	1 x 0.9	Arch	1/22/0	RCC Box	Replaced due to poor condition
46	24/350	24/478	1 x 0.8	Pipe	1/22/0	RCC Box	Replaced due to poor condition
47	24/500	24/770	1 x 1.2	Slab	1/22/0	RCC Box	Replaced due to poor condition
48	25/200	25/249	1 x 1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
49	26/400	26/430	-	Choked	1/22/0	RCC Box	Replaced due to insufficient vent, to be used for Environmental purpose
50	-	28/225	-	-	1/43/0	RCC Box	Additional structure
51	-	30/075	-	-	1/44/0	RCC Box	Additional structure
52	30/600	30/821	1 x 0.5	Arch	1/22/0	RCC Box	Replaced due to poor condition
53	-	31/400	-	-	1/43/0	RCC Box	Additional structure
54	-	31/700	-	-	1/43/0	RCC Box	Additional structure

S. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
55	-	36/775	-	-	1/43/0	RCC Box	Additional structure
56	-	36/850	-	-	1/44/0	RCC Box	Additional structure
57	-	37/850	-	-	1/43/0	RCC Box	Additional structure
58	39/300	39/387	2 x 0.45	Pipe	1/22/0	RCC Box	Replaced due to poor condition
59	39/800	39/837	1 x 0.8	Pipe	1/22/0	RCC Box	Replaced due to poor condition
60	40/350	40/310	1 x 0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition
61	40/950	40/974	1 x 0.9	Pipe	1/23/0	RCC Box	Replaced due to insufficient vent, to be used for Environmental purpose
62	-	41/125	-	-	1/43/0	RCC Box	Additional structure
63	-	41/275	-	-	1/43/0	RCC Box	Additional structure
64	-	41/375	-	-	1/43/0	RCC Box	Additional structure
65	-	41/550	-	-	1/43/0	RCC Box	Additional structure
66	41/990	41/996	2 x 1.5	Slab	1/34/0	RCC Box	Replaced due to poor condition
67	-	42/225	-	-	1/44/0	RCC Box	Additional structure
68	-	42/400	-	-	1/44/0	RCC Box	Additional structure
69	43/050	43/061	1 x 0.6	Arch	1/22/0	RCC Box	Replaced due to poor condition
70	43/600	43/771	1 x 4.8	Slab	1/43/0	RCC Box	Replaced due to poor condition
71	44/400	44/315	1 x 1.8	Slab	1/23/0	RCC Box	Replaced due to raising of road level

Summary of recommended Culverts for the stretch Bhadrak – Anandpur

	Dhutuk Anunupu							
SI. No.	Existing Chainage	-	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks	
1	1/010	1165	1 x 0.9	Pipe	1/23/0	Box Cell	Replaced due to poor condition	
2	1/275	1328	-	Choked	1/23/0	Box Cell	Replaced due to insufficient vent	
3	1/900	2010	1 x 0.9	Pipe	1/34/0	Box Cell	Replaced due to insufficient vent	
4	2/150	2201	3 x 1.5	Slab	1/44/0	Box Cell	Replaced due to poor condition	
5	2/400	2354	3 x 0.9	Pipe	1/23/0	Box Cell	Replaced due to poor condition	
6	2/600	2668	1 x 1.8	Slab	1/34/0	Box Cell	Replaced due to poor condition	

SI. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
7	3/700	3604	1 x 1.5	Slab	1/22/0	Box Cell	Replaced due to poor condition
8	3/900	3979	-	Choked	1/22/0	Box Cell	Replaced due to insufficient vent
9	4/500	4411	1 x 3.0	Slab	1/33/0	Box Cell	Replaced due to poor condition
10	5/010	5122	1 x 3.0	Slab	1/33/0	Box Cell	Replaced due to raise in road level
11	6/800	6675	1 x 1.5	Slab	2 x 1.0	Pipe	Replaced due to poor condition
12	7/880	7785	1 x 3.0	Slab	1/33/0	Box Cell	Replaced due to less carriage way width
13	8/300	8498	1 x 2.7	Slab	2 x 1.0	Pipe	Replaced due to poor condition
14	8/750	8958	1 x 0.6	Pipe	1/23/0	Box Cell	Replaced due to poor condition
15	8/850	9027	2 x 0.9	Pipe	2 x 0.9	-	To be extended
16	10/600	10699	1 x 3.0	Slab	1/33/0	Box Cell	Replaced due to less carriage way width
17	11/150	10975	1 x 1.5	Slab	1/22/0	Box Cell	Replaced due to poor condition
18	-	11249	-	-	1/22/0	Box Cell	Additional structure
19	-	11500	-	-	1/23/0	Box Cell	Additional structure
20	12/200	11869	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition, to be used for Environmental purpose
21	13/110	12809	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
22	13/800	13507	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition, to be used for Environmental purpose
23	14/200	13909	1 x 0.9	Pipe	1 x 0.9	-	To be extended
24	14/400	14166	1 x 1.8	Slab	1/22/0	Box Cell	Replaced due to poor condition
25	14/600	14300	1 x 2.4	Slab	1/33/0	Box Cell	Replaced due to raise in road level
26	15/500	15110	2 x 0.9	Pipe	2 x 0.9	-	To be extended
27	17/200	17002	1 x 1.5	Slab	1/22/0	Box Cell Replaced due to poor condition, to be used for Environmental purpose	
28	17/300	17123	2 x 0.9	Pipe	1/22/0 Box Cell		Replaced due to poor condition
29	-	17500	-	-	1/34/0	Box Cell	Additional structure
30	18/500	17954	2 x 0.9	Pipe	2 x 0.9	-	To be extended
31	18/700	18261	-	Choked	2 x 1.0	Pipe	Replaced due to insufficient vent

Sl. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
32	18/800	18444	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
33	18/850	18486	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
34	19/250	18902	1 x 0.3	Pipe	2 x 1.0	Pipe	Replaced due to poor condition
35	20/100	19695	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
36	20/800	20426	4 x 0.45	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
37	20/825	20450	1 x 1.3	Slab	1/22/0	Box Cell	Replaced due to poor condition
38	21/050	20648	1 x 4.6	Slab	1/43/0	Box Cell	Replaced due to poor condition
39	21/750	21024	1 x 0.8	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent, to be used for Environmental purpose
40	22/800	22225	2 x 0.6	Pipe	1/34/0	Box Cell	Replaced due to insufficient vent
41	23/600	22794	1 x 0.6	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
42	24/150	23700	1 x 0.3	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
43	24/700	24205	1 x 0.6	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
44	24/750	24375	1 x 0.6	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
45	25/700	25253	1 x 1.5	Slab	1/22/0	Box Cell	Replaced due to raise in road level
46	25/710	25265	1 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
47	25/990	25571	-	Choked	2 x 1.0	Pipe	Replaced due to insufficient vent
48	26/450	26025	-	Choked	2 x 1.0	Pipe	Replaced due to insufficient vent
49	26/700	26351	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
50	27/050	26645	1 x 0.45	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
51	27/100	26699	2 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to poor condition
52	27/800	27440	2 x 0.9	Pipe	2 x 0.9	-	To be extended
53	28/200	27733	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
54	28/950	28531	2 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to poor condition
55	29/100	28684	2 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to poor condition
56	29/650	29159	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
57	29/700	29250	1 x 0.45	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
58	29/800	29374	2 x 0.9	Pipe	2 x 0.9	-	To be extended

SI. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
59	30/150	29601	2 x 0.9	Pipe	2 x 0.9	-	To be extended
60	30/500	29984	2 x 0.9	Pipe	2 x 0.9	-	To be extended
61	30/900	30501	2 x 0.9	Pipe	2 x 0.9	-	To be extended
62	31/100	30684	2 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to poor condition
63	31/500	31097	1 x 1.5	Slab	1/22/0	Box Cell	Replaced due to raise in road level
64	31/800	31353	-	Choked	2 x 1.0	Pipe	Replaced due to insufficient vent
65	31/900	31484	2 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to poor condition
66	32/200	31776	4 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to change in alignment
67	32/400	32108	2 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to change in alignment
68	33/050	32528	2 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to change in alignment
69	33/450	32964	1 x 3.0	Slab	2 x 1.0	Pipe	Replaced due to poor condition
70	33/500	33013	2 x 0.9	Pipe	1/22/0	Box Cell	Replaced due to change in alignment
71	34/400	33760	1 x 0.9	Pipe	1 x 0.9	-	To be extended
72	34/750	34204	2 x 1.0	Pipe	2 x 1.0	-	To be extended
73	35/300	34662	2 x 1.1	Pipe	2 x 1.0	-	To be extended
74	35/700	34935	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
75	35/900	35281	1 x 1.0	Slab	1/63/0	Box Cell	Replaced due to insufficient vent
76	36/100	35444	1 x 1.0	Slab	1/23/0	Box Cell	Replaced due to poor condition
77	36/250	35495	1 x 1.0	Slab	1/34/0	Box Cell	Replaced due to poor condition
78	36/600	35998	2 x 1.0	Slab	1/34/0	Box Cell	Replaced due to poor condition
79	37/150	36430	1 x 0.6	Pipe	1/23/0	Box Cell	Replaced due to poor condition
80	37/200	36510	1 x 0.6	Pipe	1/34/0	Box Cell	Replaced due to poor condition
81	37/300	36624	1 x 3.15	Slab	1/44/0	Box Cell	Replaced due to raise in road level
82	-	38300	-	-	1/34/0	Box Cell	Additional structure
83	38/900	38088	1 x 3.0	Slab	1/33/0	Box Cell	Replaced due to change in alignment
84	39/450	38665	2 x 2.5	Arch	1/43/0	Box Cell	Replaced due to poor condition
85	40/500	39657	1 x 0.9	Arch	1/22/0	Box Cell	Replaced due to poor condition
86	40/850	40017	1 x 0.9	Arch	1/22/0	Box Cell	Replaced due to poor condition

Sl. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
87	41/100	40242	2 x 1.8	Arch	1/43/0	Box Cell	Replaced due to poor condition, to be used for Environmental purpose
88	41/700	40808	2 x 1.2	Slab	1/33/0	Box Cell	Replaced due to poor condition
89	-	42425	-	-	1/23/0	Box Cell	Additional structure
90	43/200	42191	1 x 0.9	Pipe	1/33/0	Box Cell	Replaced due to change in alignment
91	-	43500	-	-	1/34/0	Box Cell	Additional structure
92	-	44400	-	-	1/23/0	Box Cell	Additional structure
93	45/500	44680	1 x 1.5	Slab	1/22/0	Box Cell	Replaced due to poor condition
94	45/700	45094	1 x 1.5	Slab	1/23/0	Box Cell	Replaced due to raise in road level
95	45/900	45275	1 x 1.6	Slab	1/22/0	Box Cell	Replaced due to raise in road level
96	45/990	45395	1 x 1.5	Slab	1/22/0	Box Cell	Replaced due to raise in road level
97	46/600	45720	1 x 1.5	Slab	1/23/0	Box Cell	Replaced due to raise in road level
98	46/900	46032	1 x 1.6	Slab	1/23/0	Box Cell	Replaced due to raise in road level
99	47/300	46311	1 x 1.6	Slab	1/23/0	Box Cell	Replaced due to change in alignment
100	47/800	47246	1 x 3.0	Slab	1/33/0	Box Cell	Replaced due to raise in road level
101	48/550	47931	1 x 1.5	Slab	1/34/0	Box Cell	Replaced due to raise in road level
102	49/100	48530	1 x 3.0	Slab	1/33/0	Box Cell	Replaced due to raise in road level

DESIGN OF RETURN WALL

DESIGN OF RETAINING WALL FOR 2.000 m HEIGHT

DESIGN DATA:		
Top level of retaining wall	=	2.000 m
Ground level	=	1.000 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	2.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	25 ·
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m^2
ActiveEarthPressure		
For Grade of concrete	= M	25 & HYSD reinf. with Fe 415
Lever arm factor j	=	0.902
Moment of resistance factor Q	=	111.996
DIMENSIONS :		
Length of Base of Retaining wall	=	2.000 m
Section modulus	=	0.667 m ³
Length of Toe	=	0.400 m
Length of Heel	=	1.300 m
Thickness of Stem at base	=	0.300 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	1.700 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.300 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.300 m
Angle of inclined stem with vertical	=	0.000
Ht.of inclined potion of stem to base of footing	=	0.300 m
Ht.of inclined potion of stem to top of footing	=	0.000 m
Calculation of Earth pressure coefficients	=	
Angle of internal friction of soil ϕ	=	30 deg = 0.524 rac
Angle of wall friction δ	=	20 deg = 0.349 rac
Angle of incli . of soil at back i	=	0 deg = 0.000 rac
Angle of incli . of stem at back α	=	90 deg = 1.571 rac
Coefficient of active earth pressure k_a	=	0.297
Coefficient of horz.active earth pressure K_{ah}	=	0.279

	Calculation of Forces	a moments			rces	1		Marris
~ N	D						C.G.	Moment
S.No.	Description	Area Factor	width	Depth	Density	Weight	from	about
		10	0.000	47	0.4	1.004	Toe	toe
1	Wt of stem	1.0	0.300	1.7	2.4	1.224	0.550	0.673
2		0.5	0.000	0	2.4	0.000	0.700	0.000
3	Wt of heel slab	0.5	1.300 1.300	0	2.4	0.000	1.133	0.000
5		0.5	0.400	0.3	2.4	0.930	0.267	0.000
6	Wt of toe slab	1.0	0.400	0.3	2.4	0.000	0.207	0.000
7	Wt.of intmdt.portion	1.0	0.300	0.3	2.4	0.200	0.550	0.119
8		1.0	1.300	1.7	1.8	3.978	1.35	5.370
9	-	0.5	0.000	0	1.8	0.000	0.700	0.000
10	Wt. of soil above heel slab	1.0	1.300	0	1.8	0.000	1.350	0.000
	11	0.5	1.300	0	1.8	0.000	1.567	0.000
12	-	0.0	1.300	0.65	1.8	0.000	1.567	0.000
13		0.0	0.4	0.03	1.8	0.000	0.200	0.000
14	Wt. of soil above toe slab	0.0	0.4	0.7	1.8	0.000	0.200	0.000
15	L.L.Surcharge	0.0	1.3	1.2	1.8	0.000	1.350	0.000
15	L.L.Suicharge	0.0			1.0		1.550	
			Total forces	=		6.642		7.48
	Total Vertical load =	6.64			Total Restori	ing momer	nt =	7.48
Horz.	components of Earth I	Pressure						
	•			Pressure			C.G.	Moment
S.No.	Horz. Press due	to	Area		Height	Horz.	from	about
			factor	k _{ah} γh	Ū	Force	Тое	toe
1	Active Earth Pressure		0.5	1.006	2	1.006	0.840	0.84
2	L.L.Surcharge		1	0.603	2	1.207	1.000	1.21
				Total force	S =	2.213	1	2.05
					-			
	Total overturning moment Mo) =	2.05	tm	Total vertical	load V =	6.642	t
	Total restoring moment Mr	=	7.48		Total Horz. F	orce =	2.213	
	3		-	-			-	-
	Factor of safety against ov	erturning Mr/M	10 -	3.65	OK	>	2	
	Check for sliding :		10 -	0.00	UK	-	2	
	Coefficient of base friction =			0.500				
	Total vertical force =			6.642				
	Resisting force =			3.32				
							1 5	
	F.O.S C.G. of loads from toe = Mr/V	,	1.127	1.501	UK	>	1.5	
	Eccentricity of loads w.r.t. c/l	ratt =	0.127					
	Moment about c/l raft	=	0.842					
	Net moment about base Mn	=	1.210	t-m				
	Calculation of Base Pressu				_			. 2
	Base pressure due to vertical	load V/A	=	3.32	Pressure at t	oe =	5.14	t/m ²
	•							
	·							
	Base pressure due to momer		=	1.815	Pressure at h	neel=	1.51	t/m ²

Calculation of Forces & moments due to Vertical Forces

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	5.136	4.410	3.866	1.506	4.742
Downward Pressure	0.720	0.720	3.780	3.780	0.720
Net pressure	4.416	3.690	0.086	-2.274	4.022

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF STEM BASE Section A Height of Base of stem from top of earth fill = 1.7 m Height of Base of stem below straight portion = 5.6E-17 m C.G. Moment Area Horz. S.No. Horz. Press due to Pressure k_{a.}g.h Height from about factor Force base base 1 ActiveEarthPressure 0.5 1.7 0.727 0.714 0.52 0.855 2 L.L.Surcharge 1 0.603 1.7 0.850 1.026 0.87 Total = 1.75 1.39 1.75 t **Total Horizontal Force** Total Moment about base 1.39 tm Design bending moment 1.39 t-m Effective depth required 0.111 m Thickness of stem at base 0.300 m Effective depth provided 0.238 0.111 HENCE SAFE > 3.19 cm² Area of steel regd. Shear check: Shear force at base of stem 1.75 t Bending moment at base 1.39 t-m Net shear force 1.75 t Nominal Shear stress 7.38 t/m² Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000 100As/bd 0.15 % = 18.40 t/m² **ActiveEarthPressure** HENCE SAFE

DESIGN OF RETAINING WALL FOR 3.000 m HEIGHT

DESIGN DATA:			
Top level of retaining wall	=	3.000 m	
Ground level	=	1.000 m	
Founding Level	=	0.000 m	
Total Height from top of wall to founding level	=	3.000 m	
Density of earth	=	1.8 t/m ³	
Density of concrete	=	2.4 t/m ³	
Clear cover to Reinforcement	=	0.05 m	
Clear cover to Reinforcement for foundations	=	0.075 m	
Grade of concrete	=	25 [·]	
Allowable stress in steel	=	20380	
Safe bearing capacity	=	20 t/m ²	
Safety factor against overturning	=	2.0	
Safety factor against sliding	=	1.5	
Depth of L.L.Surcharge	=	1.2 m	
L.L.Surcharge on wall	=	0 t/m^2	
DESIGN CONSTANTS:			
For Grade of concrete	= M	25 & HYS	SD reinf. with Fe 415
Lever arm factor j	=	0.902	
Moment of resistance factor Q	=	111.996	
<u>DIMENSIONS :</u>			
Length of Base of Retaining wall	=	2.650 m	
Section modulus	=	1.170 m ³	
Length of Toe	=	0.600 m	
Length of Heel	=	1.750 m	
Thickness of Stem at base	=	0.300 m	
Thickness of straight portion of stem	=	0.300 m	
Ht. of straight portion of stem	=	2.400 m	
Minimum thickness of Toe slab	=	0.300 m	
Thickness of Toe slab at junction with stem	=	0.300 m	
Minimum thickness of heel slab	=	0.300 m	
Thickness of heel slab at junction with stem	=	0.300 m	
Angle of inclined stem with vertical	=	0.000	
Ht.of inclined potion of stem to base of footing	=	0.600 m	
Ht.of inclined potion of stem to top of footing	=	0.300 m	
Calculation of Earth pressure coefficients	=		
Angle of internal friction of soil ϕ Angle of wall friction δ	=	30 deg 20 deg	= 0.5236 rad = 0.3491 rad
-	-	-	
Angle of incli . of soil at back i Angle of incli . of stem at back α	=	0 deg 90 deg	= 0.0000 rad = 1.570796 rad
Coefficient of active earth pressure k_a	=	0.297	= 1.5/0/96 rad
Coefficient of horz.active earth pressure K_{ah}	=	0.279	

S.No.	Description	Area Factor	width	Depth	Densit y	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	2.7	2.4	1.944	0.750	1.458
2	WI OF STELL	0.5	0.000	0.3	2.4	0.000	0.900	0.000
3	Wt of heel slab	0.5	1.750	0	2.4	0.000	1.483	0.000
4	We of ficer slab	1.0	1.750	0.3	2.4	1.260	1.775	2.237
5	Wt of toe slab	0.5	0.600	0	2.4	0.000	0.400	0.000
6		1.0	0.600	0.3	2.4	0.432	0.300	0.130
7	Wt.of intmdt.portion	1.0 1.0	0.300	0.3	2.4	0.216	0.750	0.162
8 9	-	0.5	0.000	0.3	1.8 1.8	7.560 0.000	1.775 0.900	13.419 0.000
9 10	Wt. of soil above heel slab	1.0	1.750	0.3	1.8	0.000	1.775	1.677
11		0.5	1.750	0.5	1.8	0.945	2.067	0.000
12		0.0	1.750	0.875	1.8	0.000	2.067	0.000
13		0.0	0.6	0.875	1.8	0.000	0.300	0.000
14	Wt. of soil above toe slab	0.0	0.6	0.7	1.8	0.000	0.200	0.000
15	L.L.Surcharge	0.0	1.75	1.2	1.8	0.000	1.775	0.000
		0.0	Total force	1		12.357		19.08
Hara	Total Vertical load =	12.3			Total Re	estoring momen	nt =	19.08
HUIZ	. components of Earth Pr	essure		1	1			
S.No.	Horz. Press due to		Area factor	Pressure k _{ah} γh	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure		0.5	1.509	3	2.263	1.260	2.85
2	L.L.Surcharge		1	0.603	3	1.810	1.500	2.72
<u> </u>				Total force	es =	4.073		5.57
	Total overturning moment Mo Total restoring moment Mr	= =	5.57 19.08			rtical load V = orz. Force =	12.357 4.073	
	Factor of safety against overt	urning Mr	′Mo =	3.43	ОК	>	2	
	Check for sliding : Coefficient of base friction = Total vertical force = Resisting force = F.O.S C.G. of loads from toe = Mr/V = Eccentricity of loads w.r.t. c/l raf	t =	1.544 0.219	m m	t	>	1.5	
	Moment about c/l raft Net moment about base Mn Calculation of Base Pressure Base pressure due to vertical loa		= 2.709 = 2.858		Drooour	e at toe =	7.10	t/m ²

Calculation of Forces & moments due to Vertical Forces

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	7.104	5.999	5.446	2.222	6.705
Downward Pressure	0.720	0.720	5.580	5.580	0.720
Net pressure	6.384	5.279	-0.134	-3.358	5.985

** Positive net pressure means upward pressure & negative net pressure means downward pressure

i contro not procedio meano apriara pre		+		
14	.3/	2	5,	1
	17	d d		ļ
Heel	r i			Тое
	¦ 			
	Î			
1.750	ļ	i.	0.600	
▲ →	t	.[▶
	2.650			
4	3	2	5	1
DESIGN OF TOE SLAB	0	-	0	•
Reinforcement calculation				
Bending Moment at face of stem	_	1 09	8 t-m	
-	=			
Effective depth required	=	0.098		0.098
Effective depth provided at face of stem	=		' > reqd cm ²	
Area of Reinforcement reqd.at bottom	=	2.71	CIII	HENCE SAFE
Shear check: Shear force at distance d from stem		0.07	· +	
	=	2.37	t t-m	
Bending moment at sec $5-5 =$				
Net shear force at sec 5-5=S-Ms*tan β/d_1 =	:	2.37		
Depth of slab at section $5-5 =$		0.300	Effective depth d ₁	= 0.215 m
Nominal Shear stress = 7.9	90 t/m²			
Permissible shear strsss is calculated as p	er cl.304.7.1.3	B of IRC:21	-2000	
100As/bd = 0.12	26 %			
Therefore Permissible shear strsss =	18.36 t/n	n ²	HENCE SAFE	
DESIGN OF HEEL SLAB				
Bending Moment at face of stem =		3.50) t-m	
Effective depth required	=	0.177		
Effective depth of slab at face of stem =		0.215	5 m	
Reinforcement reqd.at top =		8.85	cm ²	
Shear check:		0.00		
Shear force at face of stem $S =$		3.06	S t	
Bending moment at face Ms =) t-m	
Net shear force =S-Ms*tan β /d ₁ =		3.06		
• •	21 t/m ²	0.00		
Permissible shear strsss is calculated as p		of IPC-01	2000	
	er cl.304.7.1.3 12 %		2000	
Therefore Permissible shear strsss =	27.71 t/n	2 ²	HENCE SAFE	
	21.11 1/11	1		

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill =2.7 mHeight of Base of stem below straight portion =0.3 m

	Height of Base of stem belo	w straight	portion =	0.3	m		
S.No.	Horz. Press due to	Area factor	Pressure k _{a.} g.h	Height	Horz. Force	C.G. from base	Moment about base
1	Active Earth Pressure	0.5	1.358	2.7	1.833	1.134	2.08
2	L.L.Surcharge	1	0.603	2.7	1.629	1.350	2.20
-		0.40	Total =		3.46		4.28
	Horizontal Force	3.46	-				
I otal N	Moment about base	4.28	tm				
Desigr	n bending moment	4.28	t-m				
Effecti	ve depth required	0.195	m				
Thickn	less of stem at base	0.300	m				
Effecti	ve depth provided	0.238	>	0.195	HENCE	SAFE	
Area o	of steel reqd.	9.80	cm ²				
Shear (check:						
Shear	force at base of stem	3.46	t				
Bendir	ng moment at base	4.28	t-m				
Net sh	ear force	3.46	t				
Nomin	al Shear stress	14.58	t/m ²				
	ssible shear strsss is calculat 100As/bd =	ed as per 0.41		3 of IRC:2	1-2000		
Theref	ore Permissible shear strsss		27.75	t/m ²	HENCE	SAFE	

DESIGN OF RETAINING WALL FOR 4.000 m HEIGHT

DESIGN DATA:		
Top level of retaining wall	=	4.000 m
Ground level	=	1.500 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	4.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	25 ⁻
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m^2
DESIGN CONSTANTS:		
For Grade of concrete	= M	25 & HYSD reinf. with Fe 415
Lever arm factor j	=	0.902
Moment of resistance factor Q	=	111.996
DIMENSIONS :		
Length of Base of Retaining wall	=	3.150 m
Section modulus	=	1.654 m ³
Length of Toe	=	0.700 m
Length of Heel	=	2.040 m
Thickness of Stem at base	=	0.410 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	2.400 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.450 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.450 m
Angle of inclined stem with vertical	=	0.096
Ht.of inclined potion of stem to base of footing	=	1.600 m
Ht.of inclined potion of stem to top of footing	=	1.150 m
Calculation of Earth pressure coefficients	=	
Angle of internal friction of soil ϕ	=	30 deg = 0.524 rad
Angle of wall friction δ	=	20 deg = 0.349 rad
Angle of incli . of soil at back i	=	0 deg = 0.000 rad
Angle of incli . of stem at back α	=	90 deg = 1.57080 rad
Coefficient of active earth pressure k _a	=	0.297
Coefficient of horz.active earth pressure K _{ah}	=	0.279

Calculation of Forces & moments due to Vertical For	ces
---	-----

							C.G.	Moment
S.N	Description	Area	width	Depth	Density	Weight	from	about
о.	•	Factor		•	,	•	Тое	toe
1	Wt of stem	1.0	0.300	3.55	2.4	2.556	0.850	2.173
2		0.5	0.110	1.15	2.4	0.152	1.037	0.157
3	Wt of heel slab	0.5	2.040	0.15	2.4	0.367	1.790	0.657
4		1.0	2.040	0.3	2.4	1.469	2.130	3.129
5	Wt of toe slab	0.5	0.700	0.15	2.4	0.126	0.467	0.059
6 7	W/t of intradt portion	<u>1.0</u> 1.0	0.700	0.3	2.4 2.4	0.504	0.350	0.176
8	Wt.of intmdt.portion	1.0	2.150	0.45 2.4	2.4 1.8	0.443 9.288	0.905	0.401 19.273
9		0.5	0.110	1.15	1.8	0.114	1.073	0.122
10	Wt. of soil above heel slab	1.0	2.040	1.15	1.8	4.223	2.130	8.995
11		0.5	2.040	0.15	1.8	0.275	2.470	0.680
12		0.0	2.150	1.075	1.8	0.000	2.434	0.000
13		0.0	0.7	1.1	1.8	0.000	0.350	0.000
14	Wt. of soil above toe slab	0.0	0.7	0.15	1.8	0.000	0.233	0.000
	L.L.Surcharge	0.0	2.15	1.2	1.8	0.000	2.075	0.000
			Total force			19.517		35.82
	Total Vertical load =	19.52			Total Res	storing moment	t =	35.82
							•	
по	rz. components of Earth Pr	essure		1			1	1
S.N			Area	Pressure			C.G.	Moment
0.	Horz. Press due to		factor	k _{ah} γh	Height	Horz. Force	from	about
				dili			Toe	toe
1	Active Earth Pressure		0.5	2.012	4	4.023	1.680	6.76
2	L.L.Surcharge		1	0.603	4	2.414	2.000	4.83
			•	Total force	s =	6.437		11.59
	Total overturning moment Mo	=	11.59			tical load V =	19.517	
	Total restoring moment Mr	=	35.82	tm	Total Ho	rz. Force =	6.437	t
	Factor of safety against overture	ning Mr/Mo	=	3.09	ОК	>	2	
	Check for sliding :							
	Coefficient of base friction =			0.500				
	Total vertical force =			19.517				
	Resisting force =			9.76				
	F.O.S			1.52	OK	>	1.5	
	C.G. of loads from toe = Mr/V =		1.835					
	Eccentricity of loads w.r.t. c/l raft	=	0.260					
	Moment about c/l raft	=	5.083					
	Net moment about base Mn	=	6.504	t-m				
	Calculation of Base Pressure				_			0
	Base pressure due to vertical load	V/A	=	6.20	Pressure	at toe =	10.13	t/m ²
		-		0.000	-		• • •	
	Base pressure due to moment Mn.	/ ∠	=	3.933	Pressure	at neel=	2.26	t/m ²

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	10.129	8.381	7.357	2.263	9.212
Downward Pressure	0.720	1.080	7.470	7.380	0.891
Net pressure	9.409	7.301	-0.113	-5.117	8.321

** Positive net pressure means upward pressure & negative net pressure means downward pressure ___ 7

4	3/	2	5	1
!		d		
Heel				Тое
		i		
		i		
2.040			0.700	
	•	[`		
i 🖣 👘	3.150	 i		→
4	3	2	5	1
DESIGN OF TOE SLAB	-		-	
Reinforcement calculation				
Bending Moment at face of stem	_	2.13	tm	
Effective depth required	=	0.138		
	=			0.400
Effective depth provided at face of stem	=		> reqd	0.138
Area of Reinforcement reqd.at bottom	=	3.16	cm²	HENCE SAFE
Shear check:				
Shear force at distance d from stem	=	2.95		
Bending moment at sec 5-5 =		0.50	t-m	
Net shear force at sec 5-5=S-Ms*tan β/d_1 =		2.58	t	
Depth of slab at section $5-5 =$		0.371	Effective dept	n d ₁ = 0.286 m
Nominal Shear stress = 6.9	94 t/m ²			
	γ + μ/m			
		of IRC:21-2	2000	
Permissible shear strsss is calculated as pe		of IRC:21-2	2000	
Permissible shear strsss is calculated as pe	er cl.304.7.1.3 0 %		2000 HENCE SAFE	
Permissible shear strsss is calculated as per100As/bd=0.11Therefore Permissible shear strsss=	er cl.304.7.1.3			
Permissible shear strsss is calculated as per100As/bd=0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB	er cl.304.7.1.3 0 %	2	HENCE SAFE	
Permissible shear strsss is calculated as per 100As/bd = 0.11Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem =	er cl.304.7.1.3 0 % 18.36 t/m	² 7.18	HENCE SAFE	
Permissible shear strsss is calculated as per 100As/bd = 0.11Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem =Effective depth required	er cl.304.7.1.3 0 %	2 7.18 0.253	HENCE SAFE t-m m	
Permissible shear strsss is calculated as per100As/bd=0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB Bending Moment at face of stemEffective depth requiredEffective depth of slab at face of stem	er cl.304.7.1.3 0 % 18.36 t/m	² 7.18 0.253 0.365	HENCE SAFE t-m m m	
Permissible shear strsss is calculated as per100As/bd=0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB Bending Moment at face of stemEffective depth requiredEffective depth of slab at face of stemEffective depth of slab at face of stemReinforcement reqd.at top	er cl.304.7.1.3 0 % 18.36 t/m	2 7.18 0.253	HENCE SAFE t-m m m	
Permissible shear strsss is calculated as per 100As/bd = 0.11 Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem = Effective depth required Effective depth of slab at face of stem = Reinforcement reqd.at top = Shear check:	er cl.304.7.1.3 0 % 18.36 t/m	² 7.18 0.253 0.365 10.70	HENCE SAFE t-m m cm ²	
Permissible shear strsss is calculated as per100As/bd=0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB Bending Moment at face of stemEffective depth requiredEffective depth of slab at face of stemEnding Comment reqd.at topShear check:Shear force at face of stem S	er cl.304.7.1.3 0 % 18.36 t/m	² 7.18 0.253 0.365 10.70 5.33	HENCE SAFE t-m m cm ² t	
Permissible shear strsss is calculated as per 100As/bd = 0.11 Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem = Effective depth required Effective depth of slab at face of stem = Reinforcement reqd.at top = Shear check: Shear force at face of stem S = Bending moment at face Ms =	er cl.304.7.1.3 0 % 18.36 t/m	² 7.18 0.253 0.365 10.70 5.33 7.18	HENCE SAFE m m cm ² t t-m	
Permissible shear strsss is calculated as per100As/bd=0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB Bending Moment at face of stemEffective depth requiredEffective depth of slab at face of stemEnding Comment reqd.at topShear check:Shear force at face of stem S	er cl.304.7.1.3 0 % 18.36 t/m	² 7.18 0.253 0.365 10.70 5.33	HENCE SAFE m m cm ² t t-m	
Permissible shear strsss is calculated as per 100As/bd = 0.11 Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem = Effective depth required Effective depth of slab at face of stem = Reinforcement reqd.at top = Shear check: Shear force at face of stem S = Bending moment at face Ms = Net shear force = S-Ms*tan β/d_1 =	er cl.304.7.1.3 0 % 18.36 t/m	² 7.18 0.253 0.365 10.70 5.33 7.18	HENCE SAFE m m cm ² t t-m	
Permissible shear strsss is calculated as per 100As/bd = 0.11 Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem = Effective depth required Effective depth of slab at face of stem = Reinforcement reqd.at top = Shear check: Shear force at face of stem S = Bending moment at face Ms = Net shear force = S-Ms*tan β/d_1 =	er cl.304.7.1.3 0 % 18.36 t/m =	² 7.18 0.253 0.365 10.70 5.33 7.18 3.89	HENCE SAFE t-m m cm ² t t-m t	
Permissible shear strsss is calculated as permissible shear strsss0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB Bending Moment at face of stem =Effective depth requiredEffective depth of slab at face of stem =Reinforcement reqd.at top = Shear check: Shear force at face of stem S =Bending moment at face Ms =Net shear force =S-Ms*tan β/d_1 =Nominal Shear stress =10.6Permissible shear strsss is calculated as permissible shear stress	er cl.304.7.1.3 0 % 18.36 t/m =	² 7.18 0.253 0.365 10.70 5.33 7.18 3.89	HENCE SAFE t-m m cm ² t t-m t	
Permissible shear strsss is calculated as permissible shear strsss0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB Bending Moment at face of stem =Effective depth requiredEffective depth of slab at face of stem =Reinforcement reqd.at top = Shear check: Shear force at face of stem S =Bending moment at face Ms =Net shear force =S-Ms*tan β/d_1 =Nominal Shear stress =10.6Permissible shear strsss is calculated as permissible shear stress	er cl.304.7.1.3 0 % 18.36 t/m = 65 t/m ² er cl.304.7.1.3 03 %	2 7.18 0.253 0.365 10.70 5.33 7.18 3.89 of IRC:21-2	HENCE SAFE t-m m cm ² t t-m t	
Permissible shear strsss is calculated as permissible shear strsss0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB Bending Moment at face of stem =Effective depth requiredEffective depth of slab at face of stem =Reinforcement reqd.at top = Shear check: Shear force at face of stem S =Bending moment at face Ms =Net shear force = S-Ms*tan β/d_1 =Nominal Shear stress =10.6Permissible shear strsss is calculated as permissible shear stress =100As/bd=0.29	er cl.304.7.1.3 0 % 18.36 t/m = 55 t/m ² er cl.304.7.1.3	2 7.18 0.253 0.365 10.70 5.33 7.18 3.89 of IRC:21-2	HENCE SAFE m m cm ² t t-m t 2000	
Permissible shear strsss is calculated as permissible shear strsss0.11Therefore Permissible shear strsss= DESIGN OF HEEL SLAB Bending Moment at face of stem =Effective depth requiredEffective depth of slab at face of stem =Reinforcement reqd.at top = Shear check: Shear force at face of stem S =Bending moment at face Ms =Net shear force =S-Ms*tan β/d_1 =Nominal Shear stress =10.60Permissible shear strsss is calculated as permissible shear strsss is calculated as permissible shear strsss =	er cl.304.7.1.3 0 % 18.36 t/m = 65 t/m ² er cl.304.7.1.3 03 %	2 7.18 0.253 0.365 10.70 5.33 7.18 3.89 of IRC:21-2	HENCE SAFE m m cm ² t t-m t 2000	
Permissible shear strsss is calculated as per 100As/bd = 0.11Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem =Effective depth required Effective depth of slab at face of stem =Reinforcement reqd.at top = Shear check: Shear force at face of stem S = Bending moment at face Ms = Net shear force =S-Ms*tan β/d_1 =Nominal Shear stress = 10.6 Permissible shear strsss is calculated as per 100As/bd = 0.29Therefore Permissible shear strsss = FOR CURTAILMENT Shear Force at distance from stem =	er cl.304.7.1.3 0 % 18.36 t/m = 55 t/m ² er cl.304.7.1.3 93 % 23.85 t/m	2 7.18 0.253 0.365 10.70 5.33 7.18 3.89 of IRC:21-2 2 123.873	HENCE SAFE m m cm ² t t-m t 2000	
Permissible shear strsss is calculated as per 100As/bd = 0.11 Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem = Effective depth required Effective depth of slab at face of stem = Reinforcement reqd.at top = Shear check: Shear force at face of stem S = Bending moment at face Ms = Net shear force =S-Ms*tan β/d_1 = Nominal Shear stress = 10.6 Permissible shear strsss is calculated as per 100As/bd = 0.29 Therefore Permissible shear strsss = FOR CURTAILMENT Shear Force at distance from stem = Bending Moment at distance 2.00	er cl.304.7.1.3 0 % 18.36 t/m = 65 t/m ² er cl.304.7.1.3 03 %	2 7.18 0.253 0.365 10.70 5.33 7.18 3.89 of IRC:21-2 2 123.873	HENCE SAFE m m cm ² t t-m t 2000 HENCE SAFE	
Permissible shear strsss is calculated as per 100As/bd = 0.11Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem =Effective depth required Effective depth of slab at face of stem =Reinforcement reqd.at top = Shear check: Shear force at face of stem S = Bending moment at face Ms = Net shear force =S-Ms*tan β/d_1 = Nominal Shear strsss is calculated as per 100As/bd = 0.29Therefore Permissible shear strsss = FOR CURTAILMENT Shear Force at distance from stem = Bending Moment at distance 2.00	er cl.304.7.1.3 0 % 18.36 t/m = = 55 t/m ² er cl.304.7.1.3 03 % 23.85 t/m 00 m from face	² 7.18 0.253 0.365 10.70 5.33 7.18 3.89 of IRC:21-2 ² 123.873 e of stem = 0.006	HENCE SAFE t-m m cm ² t t-m t 2000 HENCE SAFE m	0.00
Permissible shear strsss is calculated as permissible shear strsss = 0.111 Therefore Permissible shear strsss = 0.111 DESIGN OF HEEL SLAB Bending Moment at face of stem = Effective depth required Effective depth of slab at face of stem = Reinforcement reqd.at top = $\frac{Shear \ check:}{Shear \ force \ at face \ of \ stem \ S = Bending \ moment \ at \ face \ Ms = Net \ shear \ force \ shear \ strsss \ s \ calculated \ as \ permissible \ shear \ strsss \ s \ calculated \ as \ permissible \ shear \ strsss \ s \ calculated \ as \ permissible \ shear \ strsss \ s \ calculated \ as \ permissible \ shear \ strsss \ s \ calculated \ as \ permissible \ shear \ strsss \ s \ calculated \ as \ permissible \ shear \ strsss \ s \ calculated \ s \ permissible \ shear \ strsss \ s \ calculated \ s \ permissible \ shear \ strsss \ s \ calculated \ s \ permissible \ shear \ strsss \ s \ s \ strsss \ s$	er cl.304.7.1.3 0 % 18.36 t/m = 55 t/m ² er cl.304.7.1.3 93 % 23.85 t/m 00 m from face =	2 7.18 0.253 0.365 10.70 5.33 7.18 3.89 of IRC:21-2 2 123.873 e of stem = 0.006 0.220	HENCE SAFE m m cm ² t t-m t 2000 HENCE SAFE	
Permissible shear strsss is calculated as per 100As/bd = 0.11Therefore Permissible shear strsss = DESIGN OF HEEL SLAB Bending Moment at face of stem =Effective depth required Effective depth of slab at face of stem =Reinforcement reqd.at top = Shear check: Shear force at face of stem S = Bending moment at face Ms = Net shear force =S-Ms*tan β/d_1 = Nominal Shear strsss is calculated as per 100As/bd = 0.29Therefore Permissible shear strsss = FOR CURTAILMENT Shear Force at distance from stem = Bending Moment at distance 2.00	er cl.304.7.1.3 0 % 18.36 t/m = 55 t/m ² er cl.304.7.1.3 93 % 23.85 t/m 00 m from face = =	² 7.18 0.253 0.365 10.70 5.33 7.18 3.89 of IRC:21-2 ² 123.873 e of stem = 0.006	HENCE SAFE t-m m cm ² t t-m t 2000 HENCE SAFE m > reqd	0.00

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill =3.55 mHeight of Base of stem below straight portion =1.15 m

Height of Base of stem below straight portion =			1.15	111			
S.No.	Horz. Press due to	Area factor	Pressure k _{a.} g.h	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	1.785	3.55	3.169	1.491	4.72
2	L.L.Surcharge	1	0.603	3.55	2.142	1.775	3.80
-			Total =		5.31		8.53
Total M Desigr Effecti Thickn Effecti Area o	Horizontal Force Moment about base In bending moment we depth required less of stem at base we depth provided of steel reqd. check:	5.31 8.53 8.53 0.276 0.410 0.348 13.35	tm t-m m m	0.276	HENCE	SAFE	
Bendir Net sh	force at base of stem ng moment at base ear force al Shear stress	5.31 8.53 2.96 8.53	t-m t				
	ssible shear strsss is calculat 100As/bd =	ed as per 0.38		of IRC:21	-2000		
Theref	ore Permissible shear strsss		26.82	t/m ²	HENCE	SAFE	

DESIGN OF RETAINING WALL FOR	5.000	m HEIGI	ΗT		
DESIGN DATA:					
Top level of retaining wall	=	5.000	m		
Ground level	=	1.500	m		
Founding Level	=	0.000	m		
Total Height from top of wall to founding level	=	5.000	m		
Density of earth	=	1.8	t/m ³		
Density of concrete	=	2.4	t/m ³		
Clear cover to Reinforcement	=	0.05	m		
Clear cover to Reinforcement for foundations	=	0.075	m		
Grade of concrete	=	25			
Allowable stress in steel	=	20380			
Safe bearing capacity	=	20	t/m ²		
Safety factor against overturning	=	2.0			
Safety factor against sliding	=	1.5			
Depth of L.L.Surcharge	=	1.2	m		
L.L.Surcharge on wall	=	0	t/m^2		
DESIGN CONSTANTS:					
For Grade of concrete	= M	25	& HYS	D rei	nf. with Fe 415
Lever arm factor j	=	0.902			
Moment of resistance factor Q	=	111.996			
DIMENSIONS :					
Length of Base of Retaining wall	=	4.230	m		
Section modulus	=	2.982	m ³		
Length of Toe	=	1.000	m		
Length of Heel	=	2.680	m		
Thickness of Stem at base	=	0.550	m		
Thickness of straight portion of stem	=	0.300	m		
Ht. of straight portion of stem	=	2.400	m		
Minimum thickness of Toe slab	=	0.300	m		
Thickness of Toe slab at junction with stem	=	0.500	m		
Minimum thickness of heel slab	=	0.300	m		
Thickness of heel slab at junction with stem	=	0.500	m		
Angle of inclined stem with vertical	=	0.119			
Ht.of inclined potion of stem to base of footing	=	2.600	m		
Ht.of inclined potion of stem to top of footing	=	2.100	m		
Calculation of Earth pressure coefficients	=				
Angle of internal friction of soil ϕ	=		deg	=	0.524 rad
Angle of wall friction δ	=	20	deg	=	0.349 rad
Angle of incli . of soil at back i	=		deg	=	0.000 rad
Angle of incli . of stem at back α	=		deg	=	1.571 rad
Coefficient of active earth pressure k_a	=	0.297			
Coefficient of horz.active earth pressure K_{ah}	=	0.279			

S.No.	Calculation of Forces & mo	Area	width	Depth	Density	Weight	C.G.	Moment about
5.110.	Description	Factor	width	Debui	Density	weight	from Toe	toe
1	W/t of stom	1.0	0.300	4.5	2.4	3.240	1.150	3.726
2	Wt of stem	0.5	0.250	2.1	2.4	0.630	1.383	0.871
3	Wt of heel slab	0.5	2.680	0.2	2.4	0.643	2.443	1.572
4	WE OF THEET STAD	1.0	2.680	0.3	2.4	1.930	2.890	5.577
5	Wt of toe slab	0.5	1.000	0.2	2.4	0.240	0.667	0.160
6		1.0	1.000	0.3	2.4	0.720	0.500	0.360
7	Wt.of intmdt.portion	1.0	0.550	0.5	2.4	0.660	1.275	0.842
8		1.0	2.930	2.4	1.8	12.658	2.765	34.998
9		0.5	0.250	2.1	1.8	0.473	1.467	0.693
10	Wt. of soil above heel slab	1.0	2.680	2.1	1.8	10.130	2.890	29.277
11		0.5	2.680	0.2	1.8	0.482	3.337	1.610
12		0.0	2.930	1.465	1.8	0.000	3.254	0.000
13	Wt. of soil above toe slab	0.0	1	1.0	1.8	0.000	0.500	0.000
14		0.0	1	0.2	1.8	0.000	0.333	0.000
15	L.L.Surcharge	0.0	2.93	1.2	1.8	0.000	2.765	0.000
			Total force	ƏS =		31.806		79.68
	Total Vertical load =	31.81			Total Re	storing mome	nt =	79.68
Horz.	. components of Earth Pres	ssure				0		
	•			Dragory				Moment
S.No.	Horz. Press due to		Area	Pressur	e Height	Horz. Force	C.G.	about
			factor	k _{ah} γh			from Toe	toe
1	Active Earth Pressure	ļ	0.5	2.514	5	6.286	2.100	13.20
2	L.L.Surcharge		1	0.603	5	3.017	2.500	7.54
	0			Total for	es =	9.303		20.74
	Total overturning moment Mo	=	20.74			tical load V =	31.806	
	Total restoring moment Mr	=	79.68	tm	Total Ho	rz. Force =	9.303	t
	Factor of safety against overtur	ning Mr/Mo	=	3.8	34 OK	>	2	
	Check for sliding :							
	Coefficient of base friction =			0.50	00			
	Total vertical force =			31.80)6 t			
	Resisting force =			15.9	00 t			
	F.O.S				'1 OK	>	1.5	
	C.G. of loads from toe = Mr/V =		2.505					
	Eccentricity of loads w.r.t. c/l raft	=	0.390					
	Moment about c/l raft		10.110					
	Net moment about base Mn	=						
	Calculation of Base Pressure	=	0.320	(-11)				
		=	0.320	(-11)				

Coloulati f E 0 a to Vartical E

Base pressure due to moment Mn/Z

Base pressure due to vertical load V/A

= 7.52 Pressure at toe = 10.31 **4.73** t/m²

t/m²

Pressure at heel= = 2.793

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	10.312	8.991	8.265	4.726	9.761
Downward Pressure	0.720	1.200	9.300	9.180	1.000
Net pressure	9.592	7.791	-1.035	-4.454	8.761

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill =4.5 mHeight of Base of stem below straight portion =2.1 m

	Height of Base of stem belo	2.1	m				
S.No.	Horz. Press due to	Area factor	Pressure k _{a.} g.h	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	2.263	4.5	5.092	1.890	9.62
2	L.L.Surcharge	1	0.603	4.5	2.716	2.250	6.11
Total M Design Effecti Thickn Effecti Area o Shear Shear Bendir Net sh Nomin Permis	Horizontal Force Moment about base in bending moment we depth required bess of stem at base we depth provided of steel reqd. check: force at base of stem ing moment at base ear force al Shear stress ssible shear strsss is calculat 100As/bd =	7.81 15.73 15.73 0.375 0.550 0.488 17.56 7.81 15.73 3.97 8.13 ed as per 0.36	tm t-m m m cm ² t t-m t t/m ² cl.304.7.1.3 %	3 of IRC:2			15.73
Theref	ore Permissible shear strsss		26.03	t/m ²	HENCE	SAFE	

DESIGN OF RETAINING WALL FOR 6.000 m HEIGHT

DESIGN OF METAINING WALL FOR	0.000	
DESIGN DATA:		
Top level of retaining wall	=	6.000 m
Ground level	=	2.000 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	6.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	25 ·
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m^2
DESIGN CONSTANTS:		
For Grade of concrete	= M	25 & HYSD reinf. with Fe 415
Lever arm factor j	=	0.902
Moment of resistance factor Q	=	111.996
DIMENSIONS :		
Length of Base of Retaining wall	=	4.935 m
Section modulus	=	4.059 m ³
Length of Toe	=	1.175 m
Length of Heel	=	3.060 m
Thickness of Stem at base	=	0.700 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	2.400 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.600 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.600 m
Angle of inclined stem with vertical	=	0.133
Ht.of inclined potion of stem to base of footing	=	3.600 m
Ht.of inclined potion of stem to top of footing	=	3.000 m
Calculation of Earth pressure coefficients	=	
Angle of internal friction of soil ϕ	=	30 deg = 0.524 rad
Angle of wall friction δ	=	20 deg = 0.349 rad
Angle of incli . of soil at back i	=	0 deg = 0.000 rad
Angle of incli . of stem at back α	=	90 deg = 1.571 rad
Coefficient of active earth pressure k_a	=	0.297
Coefficient of horz.active earth pressure K _{ah}	=	0.279

	Calculation of Forces & mo	pments d	ue to vei	rtical For	ces	1		1
S.No.	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	W/t of stom	1.0	0.300	5.4	2.4	3.888	1.325	5.152
2	Wt of stem	0.5	0.400	3	2.4	1.440	1.608	2.316
3	Wt of heel slab	0.5	3.060	0.3	2.4	1.102	2.895	3.189
4	WE OF THEET STAD	1.0	3.060	0.3	2.4	2.203	3.405	7.502
5	Wt of toe slab	0.5	1.175	0.3	2.4	0.423	0.783	0.331
6		1.0	1.175	0.3	2.4	0.846	0.588	0.497
7	Wt.of intmdt.portion	1.0	0.700	0.6	2.4	1.008	1.525	1.537
8		1.0	3.460	2.4	1.8	14.947	3.205	47.906
9		0.5	0.400	3	1.8	1.080	1.742	1.881
	Wt. of soil above heel slab	1.0	3.060	3	1.8	16.524	3.405	56.264
11		0.5	3.060	0.3	1.8	0.826	3.915	3.235
12		0.0	3.460	1.73	1.8	0.000	3.783	0.000
13	Wt. of soil above toe slab	0.0	1.175	1.4	1.8	0.000	0.588	0.000
14		0.0	1.175	0.3	1.8	0.000	0.392	0.000
15	L.L.Surcharge	0.0	3.46	1.2	1.8	0.000	3.205	0.000
			Total force	es =		44.287		129.81
Horz	Total Vertical load = components of Earth Pres	44.29			Total Res	storing mome	nt =	129.81
TIOTZ.	components of Earth Fres	Sule						
S.No.	Horz. Press due to		Area factor	Pressure k _{ah} γh	Height	Horz. Force	C.G. from	Moment about
	Active Forth Procesure		0.5		0	0.050	Toe	toe
	Active Earth Pressure		0.5	3.017	6	9.052	2.520	22.81
2	L.L.Surcharge		1	0.603	6	3.621	3.000	10.86
				Total force	S =	12.673		33.67
	Total overturning moment Mo Total restoring moment Mr	= =	33.67 129.81			tical load V = z. Force =	44.287 12.673	
	Factor of safety against overturn	ing Mr/Mo :	=	3.85	ОК	>	2	
	<u>Check for sliding :</u> Coefficient of base friction = Total vertical force = Resisting force =			0.500 44.287 22.14	t t			
	F.O.S		o oo :	1.75	OK	>	1.5	
	C.G. of loads from toe = Mr/V =		2.931					
	Eccentricity of loads w.r.t. c/l raft	=	0.464					
	Moment about c/l raft	=	20.531					
	Net moment about base Mn	=	13.142	t-m				
	Calculation of Base Pressure							
	Base pressure due to vertical load	V/A	=	8.97	Pressure	at toe =	12.21	t/m ²
	Base pressure due to moment Mn/2	Z	=	3.238	Pressure	at heel=	5.74	t/m ²

Calculation of Forces & moments due to Vertical Forces

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	12.212	10.670	9.752	5.736	11.531
Downward Pressure	0.720	1.440	11.160	10.980	1.122
Net pressure	11.492	9.230	-1.408	-5.244	10.409

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill = 5.4 m Height of Base of stem below straight portion = 3 m

	Height of Base of stem belo	w straign	1 portion =	3	m		
S.No.	Horz. Press due to	Area factor	Pressure k _{a.} g.h	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	2.716	5.4	7.332	2.268	16.63
2	L.L.Surcharge	1	0.603	5.4	3.259	2.700	8.80
Total I Design Effect Thickr Effect Area o	Horizontal Force Moment about base n bending moment ive depth required ness of stem at base ive depth provided of steel reqd. check:	10.59 25.43 25.43 0.476 0.700 0.640 21.61	tm t-m m >	0.476	10.59 HENCE	SAFE	25.43
Shear Bendii Net sh Nomir Permi	force at base of stem ng moment at base near force nal Shear stress ssible shear strsss is calculat 100As/bd = fore Permissible shear strsss	ed as per 0.34	t-m t t/m ² cl.304.7.1.3		21-2000 HENCE	SAFE	