GOVERNMENT OF ORISSA
WORKS DEPARTMENT

ORISSA STATE ROAD PROJECT

FINAL DETAIL ENGINEERING REPORT FOR PHASE-I ROADS
 DESIGN REPORT OF CULVERTS
 BHADRAK TO CHANDBALI ($0-45 \mathrm{~km}$)
 \&
 BHADRAK TO ANANDPUR (0 - 50 km)

C O N S U L T I N G
Engineers Group Ltd. Jaipur
E-12, Moji Colony, Malviya Nagar , Jaipur, Raj.
픈 91-141-2520899, Telefax +91-141-2521348
E-mail : ceg@cegindia.com URL : www.cegindia.com

INDEX

Sl.No.	Title	Pages
1.	Introduction	$1-9$
	Design of Return Wall	
	i. 2.0 m Height	$1-5$
	ii.	3.0 m Height
	iii.	4.0 m Height
iv.	5.0 m Height	$1-5$
	v. $\quad 6.0 \mathrm{~m}$ Height	$1-5$
		$1-5$

INTRODUCTION

INTRODUCTION

This report presents the design of culverts.
In Bhadrak - Chandbali stretch there are 52 Nos. of culverts and 20 Nos. of culverts has been proposed as additional as per site condition.
In Bhadrak -Anandpur stretch there are 99 Nos. of culverts and 7 Nos. of culverts has been introduced as additional.
The total No of culverts recommended has been presented in the subsequent pages for Bhadrak - Chandbali \& Bhadrak - Anandpur stretches.

The culverts have been categorized on the basis of detailed inventory and condition survey, hydrological study, horizontal \& vertical profile of highway.

The following criterion has been taken while deciding the culverts:
i. The width of culvert shall be 12.0 m
ii. NP-3/NP-4 pipe culverts in good condition and hydrologically adequate shall be retained
iii. Slab culverts structurally in good condition and hydrologically adequate having width less than 10.0 m shall be widened as per approved alignment.
iv. All arch type culverts shall be reconstructed.
v. All new pipe culverts shall have minimum dia. of 1.0 m and box culverts of minimum span 2.0 m and height 1.5 m .
vi. RR stone masonry culverts in good condition has been retained if horizontal \& vertical profile permits.
vii. Additional culverts as per site investigation has been identified and included in this report.

On the basis of above, all culverts in this stretch lies the following category :
Summary of Culverts in the stretch Bhadrak - Chandbali

Type of Culvert	Nos.
Culverts Widened	
Slab widening	3
Culverts Replaced	33
New Single Box of 1/22/0	8
New Single Box of 1/23/0	1
New Single Box of $1 / 33 / 0$	1
New Single Box of $1 / 34 / 0$	3
New Single Box of $1 / 43 / 0$	1
New Single Box of $1 / 63 / 0$	1
New Single Box of $1 / 64 / 0$	
Additional Culverts proposed	1
Single Cell Box of $1 / 23 / 0$	14
New Single Box of $1 / 43 / 0$	5
New Single Box of $1 / 44 / 0$	$\mathbf{7 1}$
Total	

Summary of Culverts in the stretch Bhadrak - Anandpur

Type of Culvert	Nos.
Culverts Widened	
Pipe extension	12
Culverts Replaced	13
New Single Pipe	22
New Double Pipe	15
New Single Box of $1 / 22 / 0$	10
New Single Box of $1 / 23 / 0$	10
New Single Box of $1 / 33 / 0$	7
New Single Box of $1 / 34 / 0$	3
New Single Box of $1 / 43 / 0$	2
New Single Box of $1 / 44 / 0$	1
New Single Box of $1 / 63 / 0$	
Additional Culverts proposed	1
Single Cell Box of $1 / 22 / 0$	3
Single Cell Box of $1 / 23 / 0$	3
Single Cell Box of $1 / 34 / 0$	$\mathbf{1 0 2}$
Total	

The drawings of Pipe Culverts for height of fill from 0.6 to 4.0 m has been taken from SP13.For Box Culverts with different clear heights MOST Standard Drawings has been taken.

Bed levels, Formation levels, Super-elevation/Camber has been taken from highway plan \& profile drawings and data has been analysed by using Microsoft Excel Sheet.

In Box Culverts, the retaining wall is kept along the road instead of splayed Wing Wall mentioned in MOST Drawings. These Walls has been designed by using Microsoft Excel Sheet for the height varying from 2.0 to 6.0 m .

Reference codes:
IRC - 6 - 2000
IRC - 21 - 2000
IRC - 78 - 2000

Summary of recommended Culverts for the stretch
 Bhadrak - Chandbali

S. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
1	-	0/0	-	-	1/23/0	RCC Box	Additional structure
2	2/500	2/507	1×3.0	Slab	-	-	To be widened
3	2/800	2/865	1×3.0	Slab	-	-	To be widened
4	4/300	4/350	2×1.0	Pipe	1/23/0	RCC Box	Replaced due to poor condition
5	4/900	4/935	1×2.0	Arch	1/23/0	RCC Box	Replaced due to poor condition
6	-	5/705	-	-	1/43/0	RCC Box	Additional structure
7	-	5/740	-	-	1/44/0	RCC Box	Additional structure
8	6/990	7/001	1×0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
9	7/900	7/927	1×0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
10	8/900	8/939	1×4.5	Slab	1/64/0	RCC Box	Replaced due to poor condition
11	9/500	9/602	1×2.0	Slab	1/23/0	RCC Box	Replaced due to poor condition
12	9/900	9/902	1×4.5	Slab	1/63/0	RCC Box	Replaced due to poor condition
13	10/250	10/260	1×1.4	Slab	1/22/0	RCC Box	Replaced due to poor condition
14	11/100	11/142	1×1.4	Slab	1/23/0	RCC Box	Replaced due to poor condition
15	11/650	11/535	2×0.3	Pipe	1/22/0	RCC Box	Replaced due to poor condition
16	12/600	12/397	1×0.3	Pipe	1/22/0	RCC Box	Replaced due to poor condition
17	12/900	12/923	1×0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
18	13/150	13/132	1×1.4	Slab	1/23/0	RCC Box	Replaced due to poor condition
19	14/800	14/791	1×0.3	Pipe	1/22/0	RCC Box	Replaced due to poor condition
20	-	15/125	-	-	1/43/0	RCC Box	Additional structure
21	15/600	15/360	1×0.3	Pipe	1/22/0	RCC Box	Replaced due to poor condition
22	-	15/425			1/43/0	RCC Box	Additional structure
23	15/700	15/714	1×3.2	Slab	1/43/0	RCC Box	Replaced due to poor condition
24	-	15/750	-	-	1/43/0	RCC Box	Additional structure
25	-	15/850	-	-	1/43/0	RCC Box	Additional structure
26	16/500	16/509	1×0.6	Pipe	1/23/0	RCC Box	Replaced due to poor condition
27	16/700	16/733	1×0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
28	17/100	17/078	1×1.5	Slab	1/22/0	RCC Box	Replaced due to poor condition
29	17/700	17/666	1×0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
30	17/900	17/928	1×1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
31	18/200	18/195	1×1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
32	18/600	18/627	1×1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
33	19/100	19/096	1×1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
34	19/400	19/367	2×1.5	Slab	1/33/0	RCC Box	Replaced due to poor condition
35	19/900	19/888	2×2.3	Slab	-	-	To be widened
36	20/100	20/144	1×1.4	Slab	1/22/0	RCC Box	Replaced due to poor condition
37	20/200	20/365	1×0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition
38	20/700	20/691	1×0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition
39	21/050	21/074	1×0.45	Pipe	1/22/0	RCC Box	Replaced due to poor condition
40	21/150	21/235	1×0.45	Pipe	1/22/0	RCC Box	Replaced due to poor condition
41	21/400	21/490	1×0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition
42	21/700	21/829	1×1.5	Slab	1/22/0	RCC Box	Replaced due to poor condition
43	22/700	22/570	1×0.9	Pipe	1/22/0	RCC Box	Replaced due to poor condition
44	23/150	23/240	1×3.2	Slab	1/43/0	RCC Box	Replaced due to poor condition
45	24/050	24/096	1×0.9	Arch	1/22/0	RCC Box	Replaced due to poor condition
46	24/350	24/478	1×0.8	Pipe	1/22/0	RCC Box	Replaced due to poor condition
47	24/500	24/770	1×1.2	Slab	1/22/0	RCC Box	Replaced due to poor condition
48	25/200	25/249	1×1.0	Pipe	1/22/0	RCC Box	Replaced due to poor condition
49	26/400	26/430	-	Choked	1/22/0	RCC Box	Replaced due to insufficient vent, to be used for Environmental purpose
50	-	28/225	-	-	1/43/0	RCC Box	Additional structure
51	-	30/075	-	-	1/44/0	RCC Box	Additional structure
52	30/600	30/821	1×0.5	Arch	1/22/0	RCC Box	Replaced due to poor condition
53	-	31/400	-	-	1/43/0	RCC Box	Additional structure
54	-	31/700	-	-	1/43/0	RCC Box	Additional structure

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
55	-	36/775	-	-	1/43/0	RCC Box	Additional structure
56	-	36/850	-	-	1/44/0	RCC Box	Additional structure
57	-	37/850	-	-	1/43/0	RCC Box	Additional structure
58	39/300	39/387	2×0.45	Pipe	1/22/0	RCC Box	Replaced due to poor condition
59	39/800	39/837	1×0.8	Pipe	1/22/0	RCC Box	Replaced due to poor condition
60	40/350	40/310	1×0.6	Pipe	1/22/0	RCC Box	Replaced due to poor condition
61	40/950	40/974	1×0.9	Pipe	1/23/0	RCC Box	Replaced due to insufficient vent, to be used for Environmental purpose
62	-	41/125	-	-	1/43/0	RCC Box	Additional structure
63	-	41/275	-	-	1/43/0	RCC Box	Additional structure
64	-	41/375	-	-	1/43/0	RCC Box	Additional structure
65	-	41/550	-	-	1/43/0	RCC Box	Additional structure
66	41/990	41/996	2×1.5	Slab	1/34/0	RCC Box	Replaced due to poor condition
67	-	42/225	-	-	1/44/0	RCC Box	Additional structure
68	-	42/400	-	-	1/44/0	RCC Box	Additional structure
69	43/050	43/061	1×0.6	Arch	1/22/0	RCC Box	Replaced due to poor condition
70	43/600	43/771	1×4.8	Slab	1/43/0	RCC Box	Replaced due to poor condition
71	44/400	44/315	1×1.8	Slab	1/23/0	RCC Box	Replaced due to raising of road level

Summary of recommended Culverts for the stretch

Bhadrak - Anandpur

Sl. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
1	$1 / 010$	1165	1×0.9	Pipe	$1 / 23 / 0$	Box Cell	Replaced due to poor condition
2	$1 / 275$	1328	-	Choked	$1 / 23 / 0$	Box Cell	Replaced due to insufficient vent
3	$1 / 900$	2010	1×0.9	Pipe	$1 / 34 / 0$	Box Cell	Replaced due to insufficient vent
4	$2 / 150$	2201	3×1.5	Slab	$1 / 44 / 0$	Box Cell	Replaced due to poor condition
5	$2 / 400$	2354	3×0.9	Pipe	$1 / 23 / 0$	Box Cell	Replaced due to poor condition
6	$2 / 600$	2668	1×1.8	Slab	$1 / 34 / 0$	Box Cell	Replaced due to poor condition

SI. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
7	3/700	3604	1×1.5	Slab	1/22/0	Box Cell	Replaced due to poor condition
8	3/900	3979	-	Choked	1/22/0	Box Cell	Replaced due to insufficient vent
9	4/500	4411	1×3.0	Slab	1/33/0	Box Cell	Replaced due to poor condition
10	5/010	5122	1×3.0	Slab	1/33/0	Box Cell	Replaced due to raise in road level
11	6/800	6675	1×1.5	Slab	2×1.0	Pipe	Replaced due to poor condition
12	7/880	7785	1×3.0	Slab	1/33/0	Box Cell	Replaced due to less carriage way width
13	8/300	8498	1×2.7	Slab	2×1.0	Pipe	Replaced due to poor condition
14	8/750	8958	1×0.6	Pipe	1/23/0	Box Cell	Replaced due to poor condition
15	8/850	9027	2×0.9	Pipe	2×0.9	-	To be extended
16	10/600	10699	1×3.0	Slab	1/33/0	Box Cell	Replaced due to less carriage way width
17	11/150	10975	1×1.5	Slab	1/22/0	Box Cell	Replaced due to poor condition
18	-	11249	-	-	1/22/0	Box Cell	Additional structure
19	-	11500	-	-	1/23/0	Box Cell	Additional structure
20	12/200	11869	1×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition, to be used for Environmental purpose
21	13/110	12809	1×0.6	Pipe	1×1.0	Pipe	Replaced due to insufficient vent
22	13/800	13507	1×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition, to be used for Environmental purpose
23	14/200	13909	1×0.9	Pipe	1×0.9	-	To be extended
24	14/400	14166	1×1.8	Slab	1/22/0	Box Cell	Replaced due to poor condition
25	14/600	14300	1×2.4	Slab	1/33/0	Box Cell	Replaced due to raise in road level
26	15/500	15110	2×0.9	Pipe	2×0.9	-	To be extended
27	17/200	17002	1×1.5	Slab	1/22/0	Box Cell	Replaced due to poor condition, to be used for Environmental purpose
28	17/300	17123	2×0.9	Pipe	1/22/0	Box Cell	Replaced due to poor condition
29	-	17500	-	-	1/34/0	Box Cell	Additional structure
30	18/500	17954	2×0.9	Pipe	2×0.9	-	To be extended
31	18/700	18261	-	Choked	2×1.0	Pipe	Replaced due to insufficient vent

$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
32	18/800	18444	1×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition
33	18/850	18486	1×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition
34	19/250	18902	1×0.3	Pipe	2×1.0	Pipe	Replaced due to poor condition
35	20/100	19695	1×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition
36	20/800	20426	4×0.45	Pipe	2×1.0	Pipe	Replaced due to insufficient vent
37	20/825	20450	1×1.3	Slab	1/22/0	Box Cell	Replaced due to poor condition
38	21/050	20648	1×4.6	Slab	1/43/0	Box Cell	Replaced due to poor condition
39	21/750	21024	1×0.8	Pipe	2×1.0	Pipe	Replaced due to insufficient vent, to be used for Environmental purpose
40	22/800	22225	2×0.6	Pipe	1/34/0	Box Cell	Replaced due to insufficient vent
41	23/600	22794	1×0.6	Pipe	2×1.0	Pipe	Replaced due to insufficient vent
42	24/150	23700	1×0.3	Pipe	2×1.0	Pipe	Replaced due to insufficient vent
43	24/700	24205	1×0.6	Pipe	2×1.0	Pipe	Replaced due to insufficient vent
44	24/750	24375	1×0.6	Pipe	2×1.0	Pipe	Replaced due to insufficient vent
45	25/700	25253	1×1.5	Slab	1/22/0	Box Cell	Replaced due to raise in road level
46	25/710	25265	1×0.9	Pipe	2×1.0	Pipe	Replaced due to insufficient vent
47	25/990	25571	-	Choked	2×1.0	Pipe	Replaced due to insufficient vent
48	26/450	26025	-	Choked	2×1.0	Pipe	Replaced due to insufficient vent
49	26/700	26351	1×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition
50	27/050	26645	1×0.45	Pipe	1×1.0	Pipe	Replaced due to poor condition
51	27/100	26699	2×0.9	Pipe	2×1.0	Pipe	Replaced due to poor condition
52	27/800	27440	2×0.9	Pipe	2×0.9	-	To be extended
53	28/200	27733	1×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition
54	28/950	28531	2×0.9	Pipe	2×1.0	Pipe	Replaced due to poor condition
55	29/100	28684	2×0.9	Pipe	2×1.0	Pipe	Replaced due to poor condition
56	29/650	29159	1×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition
57	29/700	29250	1×0.45	Pipe	1×1.0	Pipe	Replaced due to poor condition
58	29/800	29374	2×0.9	Pipe	2×0.9	-	To be extended

$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
59	30/150	29601	2×0.9	Pipe	2×0.9	-	To be extended
60	30/500	29984	2×0.9	Pipe	2×0.9	-	To be extended
61	30/900	30501	2×0.9	Pipe	2×0.9	-	To be extended
62	31/100	30684	2×0.9	Pipe	2×1.0	Pipe	Replaced due to poor condition
63	31/500	31097	1×1.5	Slab	1/22/0	Box Cell	Replaced due to raise in road level
64	31/800	31353	-	Choked	2×1.0	Pipe	Replaced due to insufficient vent
65	31/900	31484	2×0.6	Pipe	1×1.0	Pipe	Replaced due to poor condition
66	32/200	31776	4×0.9	Pipe	2×1.0	Pipe	Replaced due to change in alignment
67	32/400	32108	2×0.9	Pipe	2×1.0	Pipe	Replaced due to change in alignment
68	33/050	32528	2×0.9	Pipe	2×1.0	Pipe	Replaced due to change in alignment
69	33/450	32964	1×3.0	Slab	2×1.0	Pipe	Replaced due to poor condition
70	33/500	33013	2×0.9	Pipe	1/22/0	Box Cell	Replaced due to change in alignment
71	34/400	33760	1×0.9	Pipe	1×0.9	-	To be extended
72	34/750	34204	2×1.0	Pipe	2×1.0	-	To be extended
73	35/300	34662	2×1.1	Pipe	2×1.0	-	To be extended
74	35/700	34935	1×0.6	Pipe	1×1.0	Pipe	Replaced due to insufficient vent
75	35/900	35281	1×1.0	Slab	1/63/0	Box Cell	Replaced due to insufficient vent
76	36/100	35444	1×1.0	Slab	1/23/0	Box Cell	Replaced due to poor condition
77	36/250	35495	1×1.0	Slab	1/34/0	Box Cell	Replaced due to poor condition
78	36/600	35998	2×1.0	Slab	1/34/0	Box Cell	Replaced due to poor condition
79	37/150	36430	1×0.6	Pipe	1/23/0	Box Cell	Replaced due to poor condition
80	37/200	36510	1×0.6	Pipe	1/34/0	Box Cell	Replaced due to poor condition
81	37/300	36624	1×3.15	Slab	1/44/0	Box Cell	Replaced due to raise in road level
82	-	38300	-	-	1/34/0	Box Cell	Additional structure
83	38/900	38088	1×3.0	Slab	1/33/0	Box Cell	Replaced due to change in alignment
84	39/450	38665	2×2.5	Arch	1/43/0	Box Cell	Replaced due to poor condition
85	40/500	39657	1×0.9	Arch	1/22/0	Box Cell	Replaced due to poor condition
86	40/850	40017	1×0.9	Arch	1/22/0	Box Cell	Replaced due to poor condition

Sl. No.	Existing Chainage	Proposed Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
87	41/100	40242	2×1.8	Arch	1/43/0	Box Cell	Replaced due to poor condition, to be used for Environmental purpose
88	41/700	40808	2×1.2	Slab	1/33/0	Box Cell	Replaced due to poor condition
89	-	42425	-	-	1/23/0	Box Cell	Additional structure
90	43/200	42191	1×0.9	Pipe	1/33/0	Box Cell	Replaced due to change in alignment
91	-	43500	-	-	1/34/0	Box Cell	Additional structure
92	-	44400	-	-	1/23/0	Box Cell	Additional structure
93	45/500	44680	1×1.5	Slab	1/22/0	Box Cell	Replaced due to poor condition
94	45/700	45094	1×1.5	Slab	1/23/0	Box Cell	Replaced due to raise in road level
95	45/900	45275	1×1.6	Slab	1/22/0	Box Cell	Replaced due to raise in road level
96	45/990	45395	1×1.5	Slab	1/22/0	Box Cell	Replaced due to raise in road level
97	46/600	45720	1×1.5	Slab	1/23/0	Box Cell	Replaced due to raise in road level
98	46/900	46032	1×1.6	Slab	1/23/0	Box Cell	Replaced due to raise in road level
99	47/300	46311	1×1.6	Slab	1/23/0	Box Cell	Replaced due to change in alignment
100	47/800	47246	1×3.0	Slab	1/33/0	Box Cell	Replaced due to raise in road level
101	48/550	47931	1×1.5	Slab	1/34/0	Box Cell	Replaced due to raise in road level
102	49/100	48530	1×3.0	Slab	1/33/0	Box Cell	Replaced due to raise in road level

DESIGN OF RETURN WALL

DESIGN OF RETAINING WALL FOR 2.000 m HEIGHT

DESIGN DATA:

Top level of retaining wall
Ground level
Founding Level
Total Height from top of wall to founding level

Density of earth
Density of concrete
Clear cover to Reinforcement
Clear cover to Reinforcement for foundations Grade of concrete
Allowable stress in steel
Safe bearing capacity
Safety factor against overturning
Safety factor against sliding
Depth of L.L.Surcharge
L.L.Surcharge on wall

ActiveEarthPressure
For Grade of concrete
Lever arm factor j
Moment of resistance factor Q

DIMENSIONS :

Length of Base of Retaining wall
Section modulus
Length of Toe
Length of Heel
Thickness of Stem at base
Thickness of straight portion of stem
Ht . of straight portion of stem
Minimum thickness of Toe slab
Thickness of Toe slab at junction with stem
Minimum thickness of heel slab
Thickness of heel slab at junction with stem
Angle of inclined stem with vertical
Ht.of inclined potion of stem to base of footing
Ht.of inclined potion of stem to top of footing
Calculation of Earth pressure coefficients
Angle of internal friction of soil ϕ
Angle of wall friction δ
Angle of incli. of soil at back i
Angle of incli. of stem at back α
Coefficient of active earth pressure k_{a}
Coefficient of horz.active earth pressure K_{ah}
$=\quad 2.000 \mathrm{~m}$
$=\quad 1.000 \mathrm{~m}$
$=\quad 0.000 \mathrm{~m}$
$=\quad 2.000 \mathrm{~m}$
$=\quad 1.8 \mathrm{t} / \mathrm{m}^{3}$
$=\quad 2.4 \mathrm{t} / \mathrm{m}^{3}$
$=\quad 0.05 \mathrm{~m}$
$=0.075 \mathrm{~m}$
$=\quad 25$
$=20380$
$=\quad 20 \mathrm{t} / \mathrm{m}^{2}$
$=\quad 2.0$
$=1.5$
$=\quad 1.2 \mathrm{~m}$
$=\quad 0 \mathrm{t} / \mathrm{m}^{\wedge} 2$

25 \& HYSD reinf. with Fe 415
0.902
111.996
$=\quad 2.000 \mathrm{~m}$
$=0.667 \mathrm{~m}^{3}$
$=\quad 0.400 \mathrm{~m}$
$=\quad 1.300 \mathrm{~m}$
$=\quad 0.300 \mathrm{~m}$
$=\quad 0.300 \mathrm{~m}$
$=\quad 1.700 \mathrm{~m}$
$=\quad 0.300 \mathrm{~m}$
$=\quad 0.300 \mathrm{~m}$
$=\quad 0.300 \mathrm{~m}$
$=\quad 0.300 \mathrm{~m}$
$=0.000$
$=\quad 0.300 \mathrm{~m}$
$=\quad 0.000 \mathrm{~m}$
$=\quad 30 \mathrm{deg}=\quad 0.524 \mathrm{rad}$
$=\quad 20 \mathrm{deg} \quad 0.349 \mathrm{rad}$
$=\quad 0 \mathrm{deg} \quad 0 \quad 0.000 \mathrm{rad}$
$=\quad 90$ deg $\quad=\quad 1.571 \mathrm{rad}$
$=0.297$
$=0.279$

Calculation of Forces \& moments due to Vertical Forces

Horz. components of Earth Pressure

Factor of safety against overturning $\mathbf{M r} / \mathbf{M o}=$
Check for sliding:
Coefficient of base friction =
Total vertical force $=$
Resisting force =
F.O.S
C.G. of loads from toe $=\mathrm{Mr} / \mathrm{V}=$

Eccentricity of loads w.r.t. c/l raft =
Moment about c/l raft
Net moment about base Mn
Calculation of Base Pressure
Base pressure due to vertical load V/A
Base pressure due to moment Mn / Z
3.65 OK
0.500
6.642 t
3.32 t
1.501 OK

2
>

1.127 m
0.127 m
$=\quad 0.842 \mathrm{t}-\mathrm{m}$
$=\quad 1.210 \mathrm{t}-\mathrm{m}$

$=3.32$	Pressure at toe $=$	$5.14 \mathrm{t} / \mathrm{m}^{2}$
$=1.815$	Pressure at heel $=$	$1.51 \mathrm{t} / \mathrm{m}^{2}$

CALCULATION OF DESIGN PRESSURES

Section	$\mathbf{1 - 1}$	$\mathbf{2 - 2}$	$\mathbf{3 - 3}$	$\mathbf{4 - 4}$	$\mathbf{5 - 5}$
Upward pressure	5.136	4.410	3.866	1.506	4.742
Downward Pressure	0.720	0.720	3.780	3.780	0.720
Net pressure	4.416	3.690	0.086	-2.274	4.022

** Positive net pressure means upward pressure \& negative net pressure means downward pressure

DESIGN OF TOE SLAB

Reinforcement calculation

Bending Moment at face of stem
Effective depth required
Effective depth provided at face of stem
Area of Reinforcement reqd.at bottom

Shear check:

Shear force at distance d from stem
Bending moment at sec 5-5 =
Net shear force at $\sec 5-5=S-\mathrm{Ms}^{*} \tan \beta / \mathrm{d}_{1}=$
Depth of slab at section 5-5 =
Nominal Shear stress $=\quad 2.57 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000 100As/bd = 0.039%
Therefore Permissible shear strsss =
$=$
$18.36 \mathrm{t} / \mathrm{m}^{2}$
HENCE SAFE

DESIGN OF HEEL SLAB

$=\quad 0.33 \mathrm{t}-\mathrm{m}$
$=\quad 0.055 \mathrm{~m}$
$=\quad 0.217>$ reqd
$=0.84 \mathrm{~cm}^{2}$
0.055

HENCE SAFE
0.77 t
0.07 t-m
0.77 t
0.300 Effective 0.215 m

Bending Moment at face of stem =
Effective depth required
Effective depth of slab at face of stem =
Reinforcement reqd.at top =

Shear check:

Shear force at face of stem $S=$
Bending moment at face Ms =
Net shear force $=$ S-Ms*tan $\beta / \mathrm{d}_{1}=$
1.26 t-m
0.106 m
0.215 m
$3.18 \mathrm{~cm}^{2}$

Nominal Shear stress =
6.62 t/m²

Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
100As/bd
$=$
0.148 \%

Therefore Permissible shear strsss =
$=\quad 18.36 \mathrm{t} / \mathrm{m}^{2}$
HENCE SAFE

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill =
Height of Base of stem below straight portion =

S.No.	Horz. Press due to
1	ActiveEarthPressure
2	L.L.Surcharge

Total Horizontal Force
Total Moment about base
1.75 t

Design bending moment
Effective depth required
Thickness of stem at base
Effective depth provided
1.39 tm
$1.39 \mathrm{t}-\mathrm{m}$
0.111 m
0.300 m
0.238
0.111 HENCE SAFE

Area of steel reqd.
$3.19 \mathrm{~cm}^{2}$
Shear check:
Shear force at base of stem
1.75 t

Bending moment at base
1.39 t-m

Net shear force
1.75 t

Nominal Shear stress
$7.38 \mathrm{t} / \mathrm{m}^{2}$

Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000 $100 \mathrm{As} / \mathrm{bd}=0.15 \%$
ActiveEarthPressure $18.40 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE

Calculation of Forces \& moments due to Vertical Forces

Horz. components of Earth Pressure

| S.No. | Horz. Press due to | Area
 factor | Pressure
 $\mathbf{k}_{\text {ah }} \gamma h$ | Height | Horz. Force | C.G.
 from
 Toe | Moment
 about
 toe |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Active Earth Pressure | 0.5 | 1.509 | 3 | 2.263 | 1.260 | 2.85 |
| 2 | L.L.Surcharge | 1 | 0.603 | 3 | 1.810 | 1.500 | 2.72 |

CALCULATION OF DESIGN PRESSURES

Section	$\mathbf{1 - 1}$	$\mathbf{2 - 2}$	$\mathbf{3 - 3}$	$\mathbf{4 - 4}$	$\mathbf{5 - 5}$
Upward pressure	7.104	5.999	5.446	2.222	6.705
Downward Pressure	0.720	0.720	5.580	5.580	0.720
Net pressure	6.384	5.279	-0.134	-3.358	5.985

** Positive net pressure means upward pressure \& negative net pressure means downward pressure

DESIGN OF TOE SLAB

Reinforcement calculation

Bending Moment at face of stem
Effective depth required
Effective depth provided at face of stem
Area of Reinforcement reqd.at bottom
Shear check:
Shear force at distance d from stem
Bending moment at sec 5-5 =
Net shear force at sec $5-5=S-\mathrm{Ms}^{*} \tan \beta / \mathrm{d}_{1}=$
Depth of slab at section 5-5 =
$=\quad 1.08 \mathrm{t}-\mathrm{m}$
$=\quad 0.098 \mathrm{~m}$
$=0.217>$ reqd 0.098
$=\quad 0.217>$ req
HENCE SAFE

Nominal Shear stress =
$7.90 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
100As/bd $=0.126 \%$
Therefore Permissible shear strsss $=18.36 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE

DESIGN OF HEEL SLAB

Bending Moment at face of stem =
Effective depth required $=0.177 \mathrm{~m}$
Effective depth of slab at face of stem $=\quad 0.215 \mathrm{~m}$
Reinforcement reqd.at top $=$
$8.85 \mathrm{~cm}^{2}$

Shear check:

Shear force at face of stem $\mathrm{S}=$
3.06 t

Bending moment at face $\mathrm{Ms}=$
3.50 t-m

Net shear force $=$ S-Ms ${ }^{*} \tan \beta / \mathrm{d}_{1}=$

Nominal Shear stress =
$14.21 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
100As/bd $=0.412 \%$
Therefore Permissible shear strsss $=\quad 27.71 \mathrm{t} / \mathrm{m}$
HENCE SAFE

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill = Height of Base of stem below straight portion =
2.7 m
0.3 m

S.No.	Horz. Press due to	Area factor	Pressure $\mathbf{k}_{\mathrm{a} . \text {. }}$.h	Height	Horz. Force	C.G. from base	Moment about base
1	Active Earth Pressure	0.5	1.358	2.7	1.833	1.134	2.08
2	L.L.Surcharge	1	0.603	2.7	1.629	1.350	2.20

Total Horizontal Force
3.46 t

Total Moment about base
4.28 tm

Design bending moment
Effective depth required
Thickness of stem at base
Effective depth provided
Area of steel reqd.
$4.28 \mathrm{t}-\mathrm{m}$
0.195 m
0.300 m
$0.238>\quad$ 0.195 HENCE SAFE
$9.80 \mathrm{~cm}^{2}$

Shear check:

Shear force at base of stem
3.46 t

Bending moment at base
Net shear force
$4.28 \mathrm{t}-\mathrm{m}$
Nominal Shear stress
3.46 t

Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000 $100 \mathrm{As} / \mathrm{bd}=0.41 \%$
Therefore Permissible shear strsss
$27.75 \mathrm{t} / \mathrm{m}^{2}$
HENCE SAFE

DESIGN OF RETAINING WALL FOR	4.000	m HEIGHT		
DESIGN DATA:				
Top level of retaining wall	=	4.000 m		
Ground level	=	1.500 m		
Founding Level	=	0.000 m		
Total Height from top of wall to founding level	=	4.000 m		
Density of earth	=	$1.8 \mathrm{t} / \mathrm{m}^{3}$		
Density of concrete	=	2.4 t/m ${ }^{3}$		
Clear cover to Reinforcement	=	0.05 m		
Clear cover to Reinforcement for foundations	=	0.075 m		
Grade of concrete	=	25		
Allowable stress in steel	=	20380		
Safe bearing capacity	=	$20 \mathrm{t} / \mathrm{m}^{2}$		
Safety factor against overturning	=	2.0		
Safety factor against sliding	=	1.5		
Depth of L.L.Surcharge	=	1.2 m		
L.L.Surcharge on wall	=	$0 \mathrm{t} / \mathrm{m}^{\wedge} 2$		
DESIGN CONSTANTS:				
For Grade of concrete	$=M$	25 \& HYSD reinf. with Fe 415		
Lever arm factor j	=	0.902		
Moment of resistance factor Q	=	111.996		
DIMENSIONS:				
Length of Base of Retaining wall	=	3.150 m		
Section modulus	=	$1.654 \mathrm{~m}^{3}$		
Length of Toe	=	0.700 m		
Length of Heel	=	2.040 m		
Thickness of Stem at base	=	0.410 m		
Thickness of straight portion of stem	=	0.300 m		
Ht . of straight portion of stem	=	2.400 m		
Minimum thickness of Toe slab	=	0.300 m		
Thickness of Toe slab at junction with stem	=	0.450 m		
Minimum thickness of heel slab	=	0.300 m		
Thickness of heel slab at junction with stem	=	0.450 m		
Angle of inclined stem with vertical	=	0.096		
Ht.of inclined potion of stem to base of footing	=	1.600 m		
Ht.of inclined potion of stem to top of footing	=	1.150 m		
Calculation of Earth pressure coefficients	=			
Angle of internal friction of soil ϕ	=	30 deg	$=$	0.524 rad
Angle of wall friction δ	=	20 deg	=	0.349 rad
Angle of incli . of soil at back i	=	0 deg	=	0.000 rad
Angle of incli. of stem at back α	=	90 deg	=	1.57080 rad
Coefficient of active earth pressure k_{a}	=	0.297		
Coefficient of horz.active earth pressure K_{ah}	=	0.279		

Calculation of Forces \& moments due to Vertical Forces

$\begin{gathered} \text { S.N } \\ 0 . \end{gathered}$	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	3.55	2.4	2.556	0.850	2.173
2		0.5	0.110	1.15	2.4	0.152	1.037	0.157
3	Wt of heel slab	0.5	2.040	0.15	2.4	0.367	1.790	0.657
4		1.0	2.040	0.3	2.4	1.469	2.130	3.129
5	Wt of toe slab	0.5	0.700	0.15	2.4	0.126	0.467	0.059
6		1.0	0.700	0.3	2.4	0.504	0.350	0.176
7	Wt.of intmdt.portion	1.0	0.410	0.45	2.4	0.443	0.905	0.401
8	Wt. of soil above heel slab	1.0	2.150	2.4	1.8	9.288	2.075	19.273
9		0.5	0.110	1.15	1.8	0.114	1.073	0.122
10		1.0	2.040	1.15	1.8	4.223	2.130	8.995
11		0.5	2.040	0.15	1.8	0.275	2.470	0.680
12		0.0	2.150	1.075	1.8	0.000	2.434	0.000
13	Wt. of soil above toe slab	0.0	0.7	1.1	1.8	0.000	0.350	0.000
14		0.0	0.7	0.15	1.8	0.000	0.233	0.000
15	L.L.Surcharge	0.0	2.15	1.2	1.8	0.000	2.075	0.000
Hor	Total Vertical load = 19.52 Total forces =				Total Res	19.517	=	$\begin{aligned} & 35.82 \\ & 35.82 \end{aligned}$
$\begin{gathered} \text { S.N } \\ 0 . \end{gathered}$	Horz. Press due to		Area factor	Pressure \mathbf{k}_{ah} 子h	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure		0.5	2.012	4	4.023	1.680	6.76
2	L.L.Surcharge		1	0.603	4	2.414	2.000	4.83
				Total force	=	6.437		11.59

Total overturning moment Mo
Total restoring moment Mr
Factor of safety against overturning $\mathbf{M r} / \mathbf{M o}=$ Check for sliding:
Coefficient of base friction =
Total vertical force =
Resisting force $=$
F.O.S
C.G. of loads from toe $=\mathrm{Mr} / \mathrm{V}=$

Eccentricity of loads w.r.t. c/l raft =
Moment about c/l raft
Net moment about base Mn
Calculation of Base Pressure
Base pressure due to vertical load V/A
Base pressure due to moment Mn / Z
11.59 tm
35.82 tm

Total vertical load $\mathrm{V}=$
19.517 t

Total Horz. Force = 3.09 OK > 2
0.500
19.517 t
9.76 t
1.52 OK > 1.5
6.437 t

CALCULATION OF DESIGN PRESSURES

Section	$\mathbf{1 - 1}$	$\mathbf{2 - 2}$	$\mathbf{3 - 3}$	$\mathbf{4 - 4}$	$\mathbf{5 - 5}$
Upward pressure	10.129	8.381	7.357	2.263	9.212
Downward Pressure	0.720	1.080	7.470	7.380	0.891
Net pressure	9.409	7.301	-0.113	-5.117	8.321

** Positive net pressure means upward pressure \& negative net pressure means downward pressure

DESIGN OF TOE SLAB

Reinforcement calculation

Bending Moment at face of stem

$=$	$2.13 \mathrm{t}-\mathrm{m}$
$=$	0.138 m
$=$	$0.367>$ reqd
$=$	$3.16 \mathrm{~cm}^{2}$

0.138

Effective depth required $=\quad 0.138 \mathrm{~m}$
Effective depth provided at face of stem $=$
$3.16 \mathrm{~cm}^{2}$
HENCE SAFE
Area of Reinforcement reqd.at bottom
$\begin{array}{ll}\text { Shear force at distance d from stem } & = \\ \text { Bending moment at sec } 5-5= & 2.95 \mathrm{t} \\ 0.50 \mathrm{t}-\mathrm{m}\end{array}$
Net shear force at sec $5-5=S-\mathrm{Ms}^{*} \tan \beta / \mathrm{d}_{1}=$
2.58 t

Depth of slab at section 5-5 =
0.371 Effective depth $\mathrm{d}_{1}=0.286 \mathrm{~m}$

Nominal Shear stress $=\quad 6.94 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
100As/bd $=0.110 \%$
Therefore Permissible shear strsss $=18.36 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE

DESIGN OF HEEL SLAB

Bending Moment at face of stem =
$7.18 \mathrm{t}-\mathrm{m}$
Effective depth required
0.253 m

Effective depth of slab at face of stem =
0.365 m

Reinforcement reqd.at top =
$10.70 \mathrm{~cm}^{2}$

Shear check:

Shear force at face of stem $\mathrm{S}=$
5.33 t

Bending moment at face $\mathrm{Ms}=$
7.18 t-m

Net shear force $=$ S-Ms ${ }^{*} \tan \beta / \mathrm{d}_{1}=$
3.89 t

Nominal Shear stress =
$10.65 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
100As/bd $=0.293 \%$
Therefore Permissible shear strsss $=\quad 23.85 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE

FOR CURTAILMENT

Shear Force at distance from stem $=\quad 123.873$
Bending Moment at distance $\quad 2.000 \mathrm{~m}$ from face of stem $=\quad 0.00$
Effective depth required $=\quad 0.006 \mathrm{~m}$
Effective depth provided $\quad=\quad 0.220>$ reqd 0.006
Curtailment Length $\quad 2.220$
Area of Reinforcement reqd.at bottom $=0.01 \mathrm{~cm}^{2}$

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill $=\quad 3.55 \mathrm{~m}$
Height of Base of stem below straight portion $=1.15 \mathrm{~m}$

S.No.	Horz. Press due to	Area factor	Pressure $\mathbf{k}_{\mathrm{a} . \text {. }}$	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	1.785	3.55	3.169	1.491	4.72
2	L.L.Surcharge	1	0.603	3.55	2.142	1.775	3.80

Total Horizontal Force
Total Moment about base
Design bending moment
Effective depth required
Thickness of stem at base
Effective depth provided
Area of steel reqd.

Shear check:

Shear force at base of stem
Bending moment at base
Net shear force
Nominal Shear stress
Permissible shear strss 100As/bd

SS
$=$
5.31 t
8.53 tm
$8.53 \mathrm{t}-\mathrm{m}$
0.276 m
0.410 m
$0.348>\quad$ 0.276 HENCE SAFE
$13.35 \mathrm{~cm}^{2}$
5.31 t
8.53 t-m
2.96 t
$8.53 \mathrm{t} / \mathrm{m}^{2}$

Therefore Permissible shear strsss $26.82 \mathrm{t} / \mathrm{m}^{2}$ HENCE SAFE

DESIGN OF RETAINING WALL FOR	5.000 m HEIGHT			
DESIGN DATA:				
Top level of retaining wall	=	5.000 m		
Ground level	=	1.500 m		
Founding Level	=	0.000 m		
Total Height from top of wall to founding level	=	5.000 m		
Density of earth	=	1.8 t/m ${ }^{3}$		
Density of concrete	=	2.4 t/m ${ }^{3}$		
Clear cover to Reinforcement	=	0.05 m		
Clear cover to Reinforcement for foundations	=	0.075 m		
Grade of concrete	=	25		
Allowable stress in steel	=	20380		
Safe bearing capacity	=	$20 \mathrm{t} / \mathrm{m}^{2}$		
Safety factor against overturning	=	2.0		
Safety factor against sliding	=	1.5		
Depth of L.L.Surcharge	=	1.2 m		
L.L.Surcharge on wall	=	$0 \mathrm{t} / \mathrm{m}^{\wedge}$		
DESIGN CONSTANTS:				
For Grade of concrete	$=\mathrm{M}$	25 \&	D r	with Fe 415
Lever arm factor j	=	0.902		
Moment of resistance factor Q	=	111.996		
DIMENSIONS :				
Length of Base of Retaining wall	=	4.230 m		
Section modulus	=	$2.982 \mathrm{~m}^{3}$		
Length of Toe	=	1.000 m		
Length of Heel	=	2.680 m		
Thickness of Stem at base	=	0.550 m		
Thickness of straight portion of stem	=	0.300 m		
Ht . of straight portion of stem	=	2.400 m		
Minimum thickness of Toe slab	=	0.300 m		
Thickness of Toe slab at junction with stem	=	0.500 m		
Minimum thickness of heel slab	=	0.300 m		
Thickness of heel slab at junction with stem	=	0.500 m		
Angle of inclined stem with vertical	=	0.119		
Ht .of inclined potion of stem to base of footing	=	2.600 m		
Ht.of inclined potion of stem to top of footing	=	2.100 m		
Calculation of Earth pressure coefficients	=			
Angle of internal friction of soil ϕ	=	30 deg	=	0.524 rad
Angle of wall friction δ	=	20 deg	=	0.349 rad
Angle of incli . of soil at back i	=	0 deg	=	0.000 rad
Angle of incli. of stem at back α	=	90 deg	=	1.571 rad
Coefficient of active earth pressure k_{a}	=	0.297		
Coefficient of horz.active earth pressure K_{ah}	=	0.279		

Calculation of Forces \& moments due to Vertical Forces

Horz. components of Earth Pressure

| S.No. | Horz. Press due to | Area
 factor | Pressure
 $\mathbf{k}_{\text {ah }} \gamma \mathrm{h}$ | Height | Horz. Force | C.G.
 from Toe | Moment
 about
 toe |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Active Earth Pressure | 0.5 | 2.514 | 5 | 6.286 | 2.100 | 13.20 |
| 2 | L.L.Surcharge | 1 | 0.603 | 5 | 3.017 | 2.500 | 7.54 |

Total overturning moment Mo =	20.74 tm	Total vertical load $\mathrm{V}=$		$\begin{array}{r} 31.806 \mathrm{t} \\ 9.303 \mathrm{t} \end{array}$
Total restoring moment Mr	79.68 tm	Total Horz. Force =		
Factor of safety against overturning Mr/Mo =		3.84 OK	>	2
Check for sliding :				
Coefficient of base friction =		0.500		
Total vertical force =		31.806 t		
Resisting force =		15.90 t		
F.O.S		1.71 OK	>	1.5
C.G. of loads from toe $=\mathrm{Mr} / \mathrm{V}=$	2.505 m			
Eccentricity of loads w.r.t. c/l raft =	0.390 m			
Moment about c/l raft =	12.416 t-m			
Net moment about base Mn	8.328 t-m			

Calculation of Base Pressure

| Base pressure due to vertical load V/A | $=7.52$ | Pressure at toe $=$ | $\mathbf{1 0 . 3 1} \mathrm{t} / \mathrm{m}^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| Base pressure due to moment Mn/Z | $=2.793$ | Pressure at heel $=$ | $\mathbf{4 . 7 3} \mathrm{t} / \mathrm{m}^{2}$ |

CALCULATION OF DESIGN PRESSURES

Section	$\mathbf{1 - 1}$	$\mathbf{2 - 2}$	$\mathbf{3 - 3}$	$\mathbf{4 - 4}$	$\mathbf{5 - 5}$
Upward pressure	10.312	8.991	8.265	4.726	9.761
Downward Pressure	0.720	1.200	9.300	9.180	1.000
Net pressure	9.592	7.791	-1.035	-4.454	8.761

** Positive net pressure means upward pressure \& negative net pressure means downward pressure

DESIGN OF TOE SLAB

Reinforcement calculation

Bending Moment at face of stem $=\quad 4.50 \mathrm{t}-\mathrm{m}$
Effective depth required
$=\quad 0.200 \mathrm{~m}$
Effective depth provided at face of stem
$=\quad 0.417>$ reqd
Area of Reinforcement reqd.at bottom
$=\quad 5.86 \mathrm{~cm}^{2}$
0.200

Shear check:
Shear force at distance d from stem $=\quad 5.35 \mathrm{t}$
Bending moment at $\sec 5-5=1.58 \mathrm{t}-\mathrm{m}$
Net shear force at sec $5-5=S-\mathrm{Ms}^{*} \tan \beta / \mathrm{d}_{1}=$
4.40 t

Depth of slab at section 5-5 =
0.417 Effective depth $\mathrm{d}_{1}=0.332 \mathrm{~m}$

Nominal Shear stress $=\quad 10.55 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
100As/bd $=\quad 0.177 \%$
Therefore Permissible shear strsss $=19.46 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE

DESIGN OF HEEL SLAB

Bending Moment at face of stem $=\quad 11.90 \mathrm{t}-\mathrm{m}$
Effective depth required $=0.326 \mathrm{~m}$
Effective depth of slab at face of stem $=\quad 0.415 \mathrm{~m}$
Reinforcement reqd.at top =
$15.60 \mathrm{~cm}^{2}$

Shear check:

Shear force at face of stem $\mathrm{S}=$
7.35 t

Bending moment at face $\mathrm{Ms}=$
11.90 t-m

Net shear force $=$ S-Ms**an $\beta / \mathrm{d}_{1}=$
5.21 t

Nominal Shear stress =
$12.57 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
100As/bd $=0.376 \%$
Therefore Permissible shear strsss $=\quad 26.55 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE

FOR CURTAILMENT

Shear Force at distance from stem $=\quad 2.259$
Bending Moment at distance $\quad 1.500 \mathrm{~m}$ from face of stem $=\quad 2.27$
Effective depth required
$=\quad 0.142 \mathrm{~m}$
Effective depth provided
$=\quad 0.305>$ reqd 0.142
Curtailment Length
$=\quad 1.805$
Area of Reinforcement reqd.at bottom $=\quad 4.05 \mathrm{~cm}^{2}$

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill $=\quad 4.5 \mathrm{~m}$ Height of Base of stem below straight portion $=\quad 2.1 \mathrm{~m}$

S.No.	Horz. Press due to	Area factor	Pressure $\mathbf{k}_{\text {a.g.h }}$	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	2.263	4.5	5.092	1.890	9.62
2	L.L.Surcharge	1	0.603	4.5	2.716	2.250	6.11

Total =
15.73

Total Horizontal Force
Total Moment about base
Design bending moment
Effective depth required
Thickness of stem at base
Effective depth provided
Area of steel reqd.

Shear check:

Shear force at base of stem
Bending moment at base
Net shear force
Nominal Shear stress
7.81 t
15.73 tm
15.73 t -m
0.375 m
0.550 m
0.488 > 0.375 HENCE SAFE
$17.56 \mathrm{~cm}^{2}$
7.81 t
$15.73 \mathrm{t}-\mathrm{m}$
3.97 t
$8.13 \mathrm{t} / \mathrm{m}^{2}$

Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000 $100 \mathrm{As} / \mathrm{bd}=0.36 \%$
Therefore Permissible shear strsss
$26.03 \mathrm{t} / \mathrm{m}^{2}$
HENCE SAFE

DESIGN OF RETAINING WALL FOR	6.000	m HEIGHT		
DESIGN DATA:				
Top level of retaining wall	=	6.000 m		
Ground level	=	2.000 m		
Founding Level	=	0.000 m		
Total Height from top of wall to founding level	=	6.000 m		
Density of earth	=	1.8 t/m ${ }^{3}$		
Density of concrete	=	2.4 t/m ${ }^{3}$		
Clear cover to Reinforcement	=	0.05 m		
Clear cover to Reinforcement for foundations	=	0.075 m		
Grade of concrete	=	25		
Allowable stress in steel	=	20380		
Safe bearing capacity	=	$20 \mathrm{t} / \mathrm{m}^{2}$		
Safety factor against overturning	=	2.0		
Safety factor against sliding	=	1.5		
Depth of L.L.Surcharge	=	1.2 m		
L.L.Surcharge on wall	=	$0 \mathrm{t} / \mathrm{m}^{\wedge}$		
DESIGN CONSTANTS:				
For Grade of concrete	$=\mathrm{M}$	25 \& HYSD reinf. with Fe 415		
Lever arm factor j	=	0.902		
Moment of resistance factor Q	=	111.996		
DIMENSIONS :				
Length of Base of Retaining wall	=	4.935 m		
Section modulus	=	$4.059 \mathrm{~m}^{3}$		
Length of Toe	=	1.175 m		
Length of Heel	=	3.060 m		
Thickness of Stem at base	=	0.700 m		
Thickness of straight portion of stem	=	0.300 m		
Ht . of straight portion of stem	=	2.400 m		
Minimum thickness of Toe slab	=	0.300 m		
Thickness of Toe slab at junction with stem	=	0.600 m		
Minimum thickness of heel slab	=	0.300 m		
Thickness of heel slab at junction with stem	=	0.600 m		
Angle of inclined stem with vertical	=	0.133		
Ht .of inclined potion of stem to base of footing	=	3.600 m		
Ht.of inclined potion of stem to top of footing	=	3.000 m		
Calculation of Earth pressure coefficients	$=$			
Angle of internal friction of soil ϕ	=	30 deg	=	0.524 rad
Angle of wall friction δ	=	20 deg	=	0.349 rad
Angle of incli . of soil at back i	=	0 deg	=	0.000 rad
Angle of incli . of stem at back α	=	90 deg	=	1.571 rad
Coefficient of active earth pressure k_{a}	=	0.297		
Coefficient of horz.active earth pressure K_{ah}	=	0.279		

Calculation of Forces \& moments due to Vertical Forces

S.No.	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	5.4	2.4	3.888	1.325	5.152
2	Wt of stem	0.5	0.400	3	2.4	1.440	1.608	2.316
3	Wt of heel slab	0.5	3.060	0.3	2.4	1.102	2.895	3.189
4	Wt of heel slab	1.0	3.060	0.3	2.4	2.203	3.405	7.502
5	Wt of toe slab	0.5	1.175	0.3	2.4	0.423	0.783	0.331
6		1.0	1.175	0.3	2.4	0.846	0.588	0.497
7	Wt.of intmdt.portion	1.0	0.700	0.6	2.4	1.008	1.525	1.537
8		1.0	3.460	2.4	1.8	14.947	3.205	47.906
9		0.5	0.400	3	1.8	1.080	1.742	1.881
10	Wt. of soil above heel slab	1.0	3.060	3	1.8	16.524	3.405	56.264
11		0.5	3.060	0.3	1.8	0.826	3.915	3.235
12		0.0	3.460	1.73	1.8	0.000	3.783	0.000
13	Wt of soil above toe slab	0.0	1.175	1.4	1.8	0.000	0.588	0.000
14	W. of soll above toe slab	0.0	1.175	0.3	1.8	0.000	0.392	0.000
15	L.L.Surcharge	0.0	3.46	1.2	1.8	0.000	3.205	0.000
		Total forces =			44.287			129.81
	Total Vertical load =	44.29			Total Restoring moment			129.81

Horz. components of Earth Pressure

S.No.	Horz. Press due to	Area factor	Pressure $\mathbf{k}_{\text {ah }} \gamma h$	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure	0.5	3.017	6	9.052	2.520	22.81
2	L.L.Surcharge	1	0.603	6	3.621	3.000	10.86

CALCULATION OF DESIGN PRESSURES

Section	$1-1$	$2-2$	$3-3$	$4-4$	$5-5$
Upward pressure	12.212	10.670	9.752	5.736	11.531
Downward Pressure	0.720	1.440	11.160	10.980	1.122
Net pressure	11.492	9.230	-1.408	-5.244	10.409

** Positive net pressure means upward pressure \& negative net pressure means downward pressure

DESIGN OF TOE SLAB

Reinforcement calculation

Bending Moment at face of stem
Effective depth required
Effective depth provided at face of stem
Area of Reinforcement reqd.at bottom
Shear check:
Shear force at distance d from stem
Bending moment at sec 5-5 =
Net shear force at $\sec 5-5=S-\mathrm{Ms}^{*} \tan \beta / \mathrm{d}_{1}=$
Depth of slab at section 5-5 =
$=\quad 7.41 \mathrm{t}-\mathrm{m}$

Nominal Shear stress = $11.95 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
$100 \mathrm{As} / \mathrm{bd}=0.203 \%$
Therefore Permissible shear strsss $=20.53 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE

DESIGN OF HEEL SLAB

Bending Moment at face of stem $=\quad 18.56 \mathrm{t}-\mathrm{m}$
Effective depth required $=\quad 0.407 \mathrm{~m}$
Effective depth of slab at face of stem $=\quad 0.517 \mathrm{~m}$
Reinforcement reqd.at top $=$
$19.53 \mathrm{~cm}^{2}$

Shear check:

Shear force at face of stem $S=$
10.18 t

Bending moment at face $\mathrm{Ms}=$ 18.56 t-m

Net shear force $=$ S-Ms ${ }^{*} \tan \beta / \mathrm{d}_{1}=$ 6.66 t

Nominal Shear stress $=\quad 12.88 \mathrm{t} / \mathrm{m}^{2}$
Permissible shear strsss is calculated as per cl.304.7.1.3 of IRC:21-2000
100As/bd $=0.378 \%$
Therefore Permissible shear strsss $=\quad 26.61 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE
FOR CURTAILMENT
Shear Force at distance from stem $=\quad 2.991$
Bending Moment at distance $\quad 2.000 \mathrm{~m}$ from face of stem =
Effective depth required
Effective depth provided
$=\quad 0.139 \mathrm{~m}$
Curtailment Length
Area of Reinforcement reqd at bottom
$=\quad 0.321>$ reqd
0.139
$=\quad 2.321$
$=\quad 3.68 \mathrm{~cm}^{2}$

HENCE SAFE
7.18 t
2.40 t-m
5.58 t
0.467 Effective depth $\mathrm{d}_{1}=0.382 \mathrm{~m}$

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill $=\quad 5.4 \mathrm{~m}$ Height of Base of stem below straight portion =

S.No.	Horz. Press due to	Area factor	Pressure $\mathbf{k}_{\text {a.g.h }}$	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	2.716	5.4	7.332	2.268	16.63
2	L.L.Surcharge	1	0.603	5.4	3.259	2.700	8.80

Total Horizontal Force
Total Moment about base
Design bending moment
Effective depth required
Thickness of stem at base
Effective depth provided
Area of steel reqd.

Shear check:

Shear force at base of stem
Bending moment at base
Net shear force
Nominal Shear stress
Permissible shear strss
$\begin{array}{cc}\text { Permissible shear strsss is calculated as per cl. } \\ 100 \mathrm{As} / \mathrm{bd} & = \\ 0.34 \%\end{array}$
Therefore Permissible shear strsss
10.59 t
25.43 tm
25.43 t-m
0.476 m
0.700 m
0.640
$21.61 \mathrm{~cm}^{2}$
10.59 t
$25.43 \mathrm{t}-\mathrm{m}$
5.29 t
8.27 t/m²
$25.30 \mathrm{t} / \mathrm{m}^{2} \quad$ HENCE SAFE

