

GOVERNMENT OF ORISSA
WORKS DEPARTMENT
ORISSA STATE ROAD PROJECT

FINAL DETAILED ENGINEERING REPORT
FOR PHASE-I ROADS
DESIGN REPORT OF CULVERTS
(BHAWANIPATNA TO KHARIAR)

CONSULTING
Engineers Group Ltd. Jaipur
E-12, Moji Colony, Malviya Nagar, Jaipur, Raj.
+ 91-141-2520899, Telefax +91-141-2521348
E-mail : ceg@cegindia.com URL : www.cegindia.com

INDEX

Sl.No.	Title	Pages
1.	Introduction	1-6
2.	Design of Return Wall	
	i. 2.0m Height	1-5
	ii. 3.0m Height	1-5
	iii. 4.0m Height	1-5
	iv. 5.0m Height	1-5
	v. 6.0m Height	1-5
	vi. 7.0m Height	1-5

INTRODUCTION

INTRODUCTION

The culverts have been categorized on the basis of detailed inventory and condition survey, hydrological study, horizontal & vertical profile of highway.

The following criterion has been taken while deciding the culverts :

- i. The width of culvert shall be 12.0m
- ii. NP-3/NP-4 pipe culverts in good condition and hydrologically adequate shall be retained
- iii. Slab culverts structurally in good condition and hydrologically adequate having width less than 10.0m shall be widened as per approved alignment.
- iv. All arch type culverts shall be reconstructed.
- v. All new pipe culverts shall have minimum dia. of 1.0m and box culverts of minimum span 2.0m and height 1.5m.
- vi. RR stone masonry culverts shall be reconstructed.
- vii. Additional culverts as per site investigation has been identified and included in this report.

On the basis of above, all culverts lies in the following category :

- i. Single Pipe Culverts of 1.0m dia
- ii. Double Pipe Culverts of 1.0m dia
- iii. Extension of Pipe Culverts with existing pipe dia
- iv. Single Cell box Culverts upto span of 6.0m
- v. Widening of Slab Culverts

On the basis of above, all culverts in this stretch lies the following category

Summary of Proposed Culverts

Type of Culvert	Nos.
Culverts Retained	
Culverts Widened	
Pipe extension	4
Slab widening	Nil
Culverts Replaced	
New Single Pipe	33
New Double Pipe	13
New Single Box of 1/22/0	11
New Single Box of 1/23/0	24
New Single Box of 1/33/0	4
New Single Box of 1/34/0	11
New Single Box of 1/43/0	2
New Single Box of 1/44/0	2
New Single Box of 1/45/0	4
New Single Box of 1/63/0	2
New Single Box of 1/64/0	1
Additional Culverts proposed	

Type of Culvert	Nos.
Single Pipe	1
Double Pipe	3
Single Cell Box of 1/22/0	3
Single Cell Box of 1/23/0	2
Total	120

The drawings of Pipe Culverts for height of fill from 0.6 to 4.0m has been taken from SP-13. For Box Culverts with different clear heights MOST Standard Drawings has been taken.

Bed levels, Formation levels, Super-elevation/Camber has been taken from highway plan & profile drawings and data has been analysed by using Microsoft Excel Sheet.

In Box Culverts, the retaining wall is kept along the road instead of splayed Wing Wall mentioned in MOST Drawings. These Walls has been designed by using Microsoft Excel Sheet for the height varying from 2.0 to 6.0m.

Reference codes:

IRC – 6 – 2000

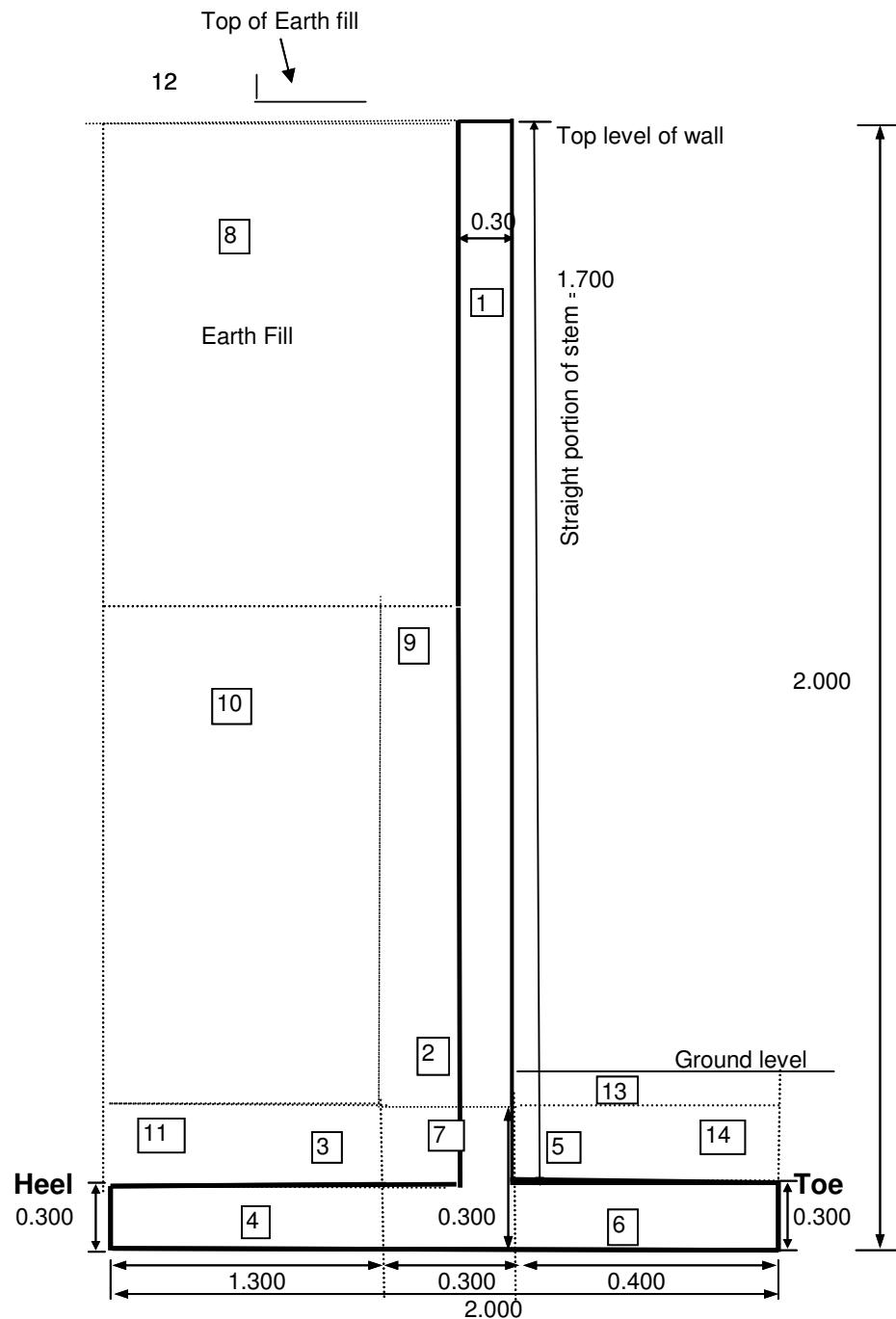
IRC – 21 – 2000

IRC – 78 – 2000

Proposed Culverts

S. No.	Location/ Chainage	Design Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
1	3/450	3683	1 x 1.0	Slab	2 x 1.0	Pipe	Reconstruction due to poor condition
2	4/100	4112	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent, to be used for Environmental purpose
3	5/450	5494	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
4	5/650	5691	1 x 1.2	Stone Slab	1/34/0	RCC Box	Stone slab culvert, to be replaced
5	5/800	5800	-	-	1/22/0	RCC Box	Additional structure
6	6/550	6533	2 x 1.0	Pipe	1/34/0	RCC Box	Replaced due to poor conditon
7	6/900	6935	1 x 2.4	Slab	1/45/0	RCC Box	Replaced due to raise in road level
8	7/015	7030	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
9	7/800	7815	1 x 0.3	Stone Slab	1/22/0	RCC Box	Stone slab culvert, to be replaced
10	9/450	9474	1 x 0.9	Slab	1/34/0	RCC Box	Replaced due to poor condition
11	10/100	10109	1 x 0.6	Pipe	1/23/0	RCC Box	Replaced due to insufficient vent
12	10/150	10147	2 x 1.0	Pipe	1/23/0	RCC Box	Replaced due to poor condition

S. No.	Location/ Chainage	Design Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
13	10/700	10698	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
14	10/750	10744	1 x 1.9	Slab	1/34/0	RCC Box	Reconstruction due to poor condition
15	11/650	11700	-	-	1 x 1.0	Pipe	Additional structure
16	12/600	12599	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
17	12/700	12687	1 x 1.8	Slab	1/23/0	RCC Box	Replaced due to raise in road level
18	12/750	12746	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
19	12/800	12826	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
20	13/300	13341	1 x 1.0	Pipe	-	-	To be widened
21	14/050	14055	1 x 0.9	Slab	1/22/0	RCC Box	Replaced due to raise in road level
22	14/400	14372	2 x 0.9	Vented Causeway	1/23/0	RCC Box	Vented causeway, to be replaced
23	14/800	14799	3 x 1.0	Pipe	1/22/0	RCC Box	Reconstruction due to poor condition
24	15/005	14990	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
25	15/250	15191	1 x 0.9	Vented Causeway	1 x 1.0	Pipe	Vented causeway, to be replaced
26	15/600	15574	1 x 0.6	Pipe	1/22/0	RCC Box	Replaced due to insufficient vent
27	15/850	15830	2 x 0.9	Vented Causeway	1/45/0	RCC Box	Vented causeway, to be replaced
28	16/050	16002	1 x 0.6	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
29	17/500	17509	3 x 0.9	Vented Causeway	1/45/0	RCC Box	Vented causeway, to be replaced
30	18/100	18047	2 x 0.9	Vented Causeway	2 x 1.0	Pipe	Vented causeway to be replaced
31	18/850	18831	1 x 3.0	Arch	1/34/0	RCC Box	Arch culvert to be replaced, to be used for Environmental purpose
32	19/700	19661	1 x 0.75	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
33	20/150	20112	5 x 1.0	Pipe	1/43/0	RCC Box	Replaced due to insufficient vent
34	20/400	20337	5 x 1.0	Pipe	1/43/0	RCC Box	Replaced due to insufficient vent
35	21/650	21607	2 x 0.9	Vented Causeway	2 x 1.0	Pipe	Vented causeway, to be replaced
36	22/150	22135	2 x 0.9	Vented Causeway	1/23/0	RCC Box	Vented causeway to be replaced, to be used for Environmental purpose
37	22/350	22380	2 x 0.9	Vented Causeway	2 x 1.0	Pipe	Vented causeway to be replaced
38	23/100	23061	2 x 0.9	Vented Causeway	1/23/0	RCC Box	Vented causeway to be replaced
39	23/250	23200	1 x 1.0	Pipe	1 x 1.0	Pipe	Replaced due to raise in road level


S. No.	Location/ Chainage	Design Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
40	23/350	23321	2 x 0.9	Vented Causeway	1/34/0	RCC Box	Vented causeway to be replaced
41	23/650	23538	2 x 0.9	Vented Causeway	2 x 1.0	Pipe	Vented causeway to be replaced
42	24/100	24062	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
43	24/450	24402	3 x 1.2	Pipe	-	-	To be widened
44	24/550	24513	3 x 0.9	Vented Causeway	2 x 1.0	Pipe	Vented causeway to be replaced
45	25/750	25723	2 x 0.9	Vented Causeway	2 x 1.0	Pipe	Vented causeway to be replaced
46	26/750	26695	2 x 0.9	Vented Causeway	2 x 1.0	Pipe	Vented causeway to be replaced
47	27/100	27045	1 x 0.6	Pipe	1 x 1.0	Pipe	Reconstruction due to poor condition
48	27/250	27175	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
49	30/850	30830	1 x 1.5	Slab	1/23/0	RCC Box	Reconstruction due to poor condition
50	31/250	31300	1 x 1.5	Slab	1/23/0	RCC Box	Reconstruction due to poor condition
51	32/050	32044	1 x 1.5	Slab	1/23/0	RCC Box	Replaced due to raise in road level
52	33/200	33238	1 x 3.0	Slab	1/23/0	RCC Box	Replaced due to raise in road level
53	33/800	33800	-	-	1/23/0	RCC Box	Additional structure
54	34/700	34732	1 x 1.5	Slab	2 x 1.0	Pipe	Replaced due to Submergence
55	35/985	36050	-	-	1/22/0	RCC Box	Additional structure
56	36/900	36961	1 x 1.5	Slab	1/33/0	RCC Box	Replaced due to Submergence
57	37/100	37214	1 x 1.5	Slab	1/34/0	RCC Box	Replaced due to Submergence
58	37/400	37563	1 x 1.5	Slab	1/23/0	RCC Box	Replaced due to Submergence
59	38/400	38383	1 x 1.5	Slab	1/23/0	RCC Box	Replaced due to Submergence
60	39/100	39150	-	-	2 x 1.0	Pipe	Additional structure
61	40/100	40089	1 x 1.5	Slab	1/23/0	RCC Box	Replaced due to Submergence
62	40/950	41037	1 x 1.5	Slab	1/22/0	RCC Box	Replaced due to raise in road level
63	41/300	41409	1 x 1.5	Slab	1/23/0	RCC Box	Reconstruction due to poor condition
64	41/700	41789	1 x 1.5	Slab	1/45/0	RCC Box	Replaced due to raise in road level
65	42/200	42320	1 x 1.5	Slab	1/34/0	RCC Box	Replaced due to raise in road level
66	42/550	42635	1 x 0.45	Pipe	1 x 1.0	Pipe	Reconstruction due to poor condition
67	43/100	43159	1 x 3.0	Slab	1/33/0	RCC Box	Reconstruction due to poor condition

S. No.	Location/ Chainage	Design Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
68	44/150	44261	1 x 1.5	Slab	1/22/0	RCC Box	Replaced due to raise in road level
69	44/850	44954	1 x 3.0	Slab	1/34/0	RCC Box	Reconstruction due to poor condition
70	45/150	45296	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
71	45/600	45711	1 x 0.6	Pipe	1/23/0	RCC Box	Reconstruction due to poor condition
72	45/850	46047	1 x 4.5	Slab	1/63/0	RCC Box	Replaced due to raise in road level
73	46/200	46325	-	-	2 x 1.0	Pipe	Additional structure
74	46/350	46514	1 x 1.5	Slab	1/22/0	RCC Box	Replaced due to raise in road level
75	47/050	47165	1 x 1.5	Slab	1/22/0	RCC Box	Replaced due to raise in road level
76	47/200	47322	1 x 1.5	Slab	1 x 1.0	Pipe	Reconstruction due to poor condition
77	49/600	49726	1 x 1.5	Slab	1/23/0	RCC Box	Replaced due to raise in road level
78	50/150	50287	1 x 1.5	Slab	1/44/0	RCC Box	Replaced due to raise in road level
79	50/300	50499	1 x 1.5	Slab	1/23/0	RCC Box	Reconstruction due to poor condition
80	51/025	51174	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
81	51/250	51409	1 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
82	51/400	51580	1 x 0.9	Pipe	2 x 1.0	Pipe	Replaced due to insufficient vent
83	51/600	51760	2 x 0.9	Pipe	1/34/0	RCC Box	Replaced due to raise in road level
84	51/900	52068	1 x 0.6	Pipe	1 x 1.0	Pipe	Reconstruction due to poor condition
85	52/100	52296	1 x 0.6	Pipe	2 x 1.0	Pipe	Reconstruction due to poor condition
86	52/250	52424	1 x 0.9	Pipe	1 x 1.0	Pipe	Reconstruction due to poor condition
87	52/700	52844	4 x 0.9	Pipe	-	-	To be widened
88	53/500	53679	1 x 0.9	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
89	53/950	54148	1 x 1.4	Slab	1/23/0	RCC Box	Replaced due to raise in road level
90	54/350	54606	1 x 1.3	Slab	1/44/0	RCC Box	Replaced due to raise in road level, to be used for Environmental purpose
91	55/250	55420	1 x 1.5	Slab	1 x 1.0	Pipe	Replaced due to Submergence
92	56/100	56270	1 x 5.0	Slab	1/64/0	RCC Box	Reconstruction due to poor condition
93	56/200	56390	-	-	1/22/0	RCC Box	Additional structure
94	56/400	56587	1 x 0.9	Pipe	-	-	To be widened

S. No.	Location/ Chainage	Design Chainage	Existing Span Arrangement	Type of Existing Culvert	Proposed Span Arrangement	Type of Proposed Culvert	Remarks
95	56/950	57150	-	-	2 x 1.0	Pipe	Additional structure
96	57/150	57321	1 x 0.9	Pipe	1 x 1.0	Pipe	Reconstruction due to poor condition
97	57/500	57360	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
98	57/900	57664	1 x 0.45	Skew Pipe	1 x 1.0	Pipe	Reconstruction due to poor condition
99	59/850	59625	1 x 0.45	Pipe	1 x 1.0	Pipe	Reconstruction due to poor condition
100	60/100	59915	1 x 3.0	Slab	1/33/0	RCC Box	Replaced due to raise in road level
101	60/750	60567	1 x 1.5	Slab	1/34/0	RCC Box	Replaced due to raise in road level
102	61/550	61373	1 x 1.5	Slab	1/23/0	RCC Box	Reconstruction due to poor condition
103	62/250	62100	1 x 3.0	Slab	1/33/0	RCC Box	Reconstruction due to poor condition
104	62/900	62962	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
105	63/200	63300	1 x 1.5	Slab	1/23/0	RCC Box	Replaced due to raise in road level
106	63/550	63298	1 x 6.2	Slab	1/63/0	RCC Box	Reconstruction due to poor condition
107	63/900	63700	1 x 1.5	Slab	1 x 1.0	Pipe	Replaced due to raise in road level
108	64/600	64622	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
109	64/825	64891	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent, to be used for Environmental purpose
110	65/100	65122	1 x 0.6	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
111	65/350	65430	1 x 1.5	Slab	1 x 1.0	Pipe	Replaced due to raise in road level
112	65/675	65624	1 x 1.5	Slab	1/23/0	RCC Box	Reconstruction due to poor condition
113	65/900	66027	1 x 1.5	Slab	1/22/0	RCC Box	Reconstruction due to poor condition
114	66/200	66161	1 x 0.9	Pipe	1/23/0	RCC Box	Replaced due to insufficient vent
115	66/430	66500	-	-	1/23/0	RCC Box	Additional structure
116	67/300	67100	1 x 0.6	Pipe	1/22/0	RCC Box	Replaced due to raise in road level
117	67/550	67325	1 x 0.9	Pipe	1 x 1.0	Pipe	Replaced due to insufficient vent
118	67/850	67620	1 x 0.9	Pipe	1/23/0	RCC Box	Replaced due to raise in road level, to be used for Environmental purpose
119	68/200	68010	1 x 0.6	Pipe	1/23/0	RCC Box	Replaced due to insufficient vent
120	68/700	68445	1 x 1.5	Slab	1/22/0	RCC Box	Replaced due to raise in road level

DESIGN OF RETURN WALL

DESIGN OF RETAINING WALL FOR 2.000 m HEIGHT**DESIGN DATA:**

Top level of retaining wall	=	2.000 m
Ground level	=	1.000 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	2.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	20
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m ²
ActiveEarthPressure		
For Grade of concrete	= M	20 & HYSD reinf. with Fe 415
Lever arm factor j	=	0.916
Moment of resistance factor Q	=	78.54

DIMENSIONS :

Length of Base of Retaining wall	=	2.000 m
Section modulus	=	0.667 m ³
Length of Toe	=	0.400 m
Length of Heel	=	1.300 m
Thickness of Stem at base	=	0.300 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	1.700 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.300 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.300 m
Angle of inclined stem with vertical	=	0.000
Ht.of inclined portion of stem to base of footing	=	0.300 m
Ht.of inclined portion of stem to top of footing	=	0.000 m

Calculation of Earth pressure coefficients

Angle of internal friction of soil ϕ	=	30 deg	=	0.524 rad
Angle of wall friction δ	=	20 deg	=	0.349 rad
Angle of incli . of soil at back i	=	0 deg	=	0.000 rad
Angle of incli . of stem at back α	=	90 deg	=	1.571 rad
Coefficient of active earth pressure K_a	=	0.297		
Coefficient of horz.active earth pressure K_{ah}	=	0.279		

Calculation of Forces & moments due to Vertical Forces

S.No.	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	1.7	2.4	1.224	0.550	0.673
2		0.5	0.000	0	2.4	0.000	0.700	0.000
3	Wt of heel slab	0.5	1.300	0	2.4	0.000	1.133	0.000
4		1.0	1.300	0.3	2.4	0.936	1.350	1.264
5	Wt of toe slab	0.5	0.400	0	2.4	0.000	0.267	0.000
6		1.0	0.400	0.3	2.4	0.288	0.200	0.058
7	Wt.of intmdt.portion	1.0	0.300	0.3	2.4	0.216	0.550	0.119
8	Wt. of soil above heel slab	1.0	1.300	1.7	1.8	3.978	1.35	5.370
9		0.5	0.000	0	1.8	0.000	0.700	0.000
10		1.0	1.300	0	1.8	0.000	1.350	0.000
11		0.5	1.300	0	1.8	0.000	1.567	0.000
12		0.0	1.300	0.65	1.8	0.000	1.567	0.000
13	Wt. of soil above toe slab	0.0	0.4	0.7	1.8	0.000	0.200	0.000
14		0.0	0.4	0	1.8	0.000	0.133	0.000
15	L.L.Surcharge	0.0	1.3	1.2	1.8	0.000	1.350	0.000

Total forces = **6.642** 7.48

Total Vertical load = **6.64** Total Restoring moment = **7.48**

Horz. components of Earth Pressure

S.No.	Horz. Press due to	Area factor	Pressure $k_{ah}\gamma h$	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure	0.5	1.006	2	1.006	0.840	0.84
2	L.L.Surcharge	1	0.603	2	1.207	1.000	1.21
			Total forces = 2.213			2.05	

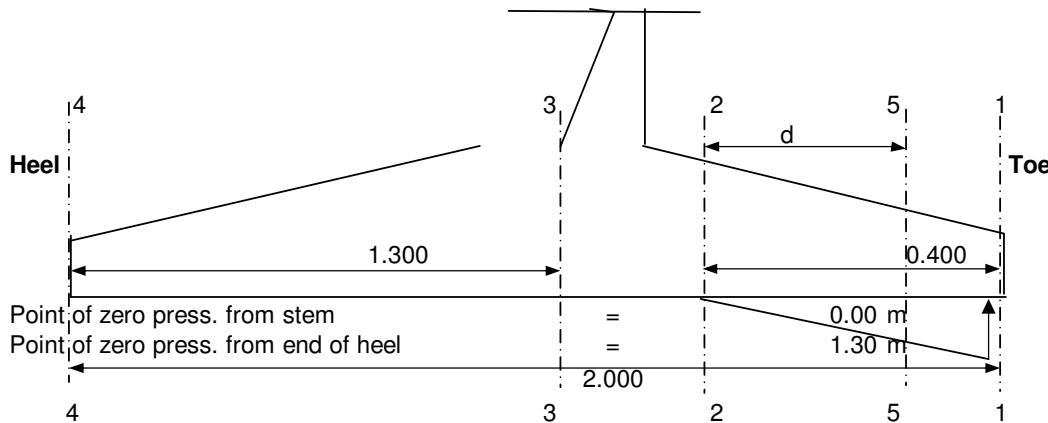
Total overturning moment M_o = 2.05 tm Total vertical load V = 6.642 t
 Total restoring moment M_r = 7.48 tm Total Horz. Force = 2.213 t

Factor of safety against overturning M_r/M_o = 3.65 OK > 2

Check for sliding :

Coefficient of base friction = 0.500
 Total vertical force = 6.642 t
 Resisting force = 3.32 t
 F.O.S = 1.501 OK > 1.5
 C.G. of loads from toe = M_r/V = 1.127 m
 Eccentricity of loads w.r.t. c/l raft = 0.127 m
 Moment about c/l raft = 0.842 t-m
 Net moment about base N = 1.210 t-m

Calculation of Base Pressure


Base pressure due to vertical load V/A = 3.32 Pressure at toe = **5.14 t/m²**

Base pressure due to moment M_n/Z = 1.815 Pressure at heel= **1.51 t/m²**

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	5.136	4.410	3.866	1.506	4.742
Downward Pressure	0.720	0.720	3.780	3.780	0.720
Net pressure	4.416	3.690	0.086	-2.274	4.022

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF TOE SLAB**Reinforcement calculation**

Bending Moment at face of stem	=	0.33 t-m
Effective depth required	=	0.065 m
Effective depth provided at face of stem	=	0.217 > reqd 0.065
Area of Reinforcement reqd. at bottom	=	0.82 cm ² HENCE SAFE

Shear check:

Shear force at distance d from stem	=	0.77 t
Bending moment at sec 5-5 =		0.07 t-m
Net shear force at sec 5-5 = $S - M_s \cdot \tan\beta / d_1 =$		0.77 t
		Effective
Depth of slab at section 5-5 =	=	0.300 depth d_1 0.215 m

$$\text{Nominal Shear stress} = 2.57 \text{ t/m}^2$$

Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000

100As/bd	=	0.038 %
Therefore Permissible shear stress	=	18.36 t/m ² HENCE SAFE

DESIGN OF HEEL SLAB

Bending Moment at face of stem =		1.26 t-m
Effective depth required	=	0.127 m
Effective depth of slab at face of stem =		0.215 m
Reinforcement reqd. at top =		3.13 cm ²

Shear check:

Shear force at face of stem $S =$		1.42 t
Bending moment at face $M_s =$		1.26 t-m
Net shear force = $S - M_s \cdot \tan\beta / d_1 =$		1.42 t

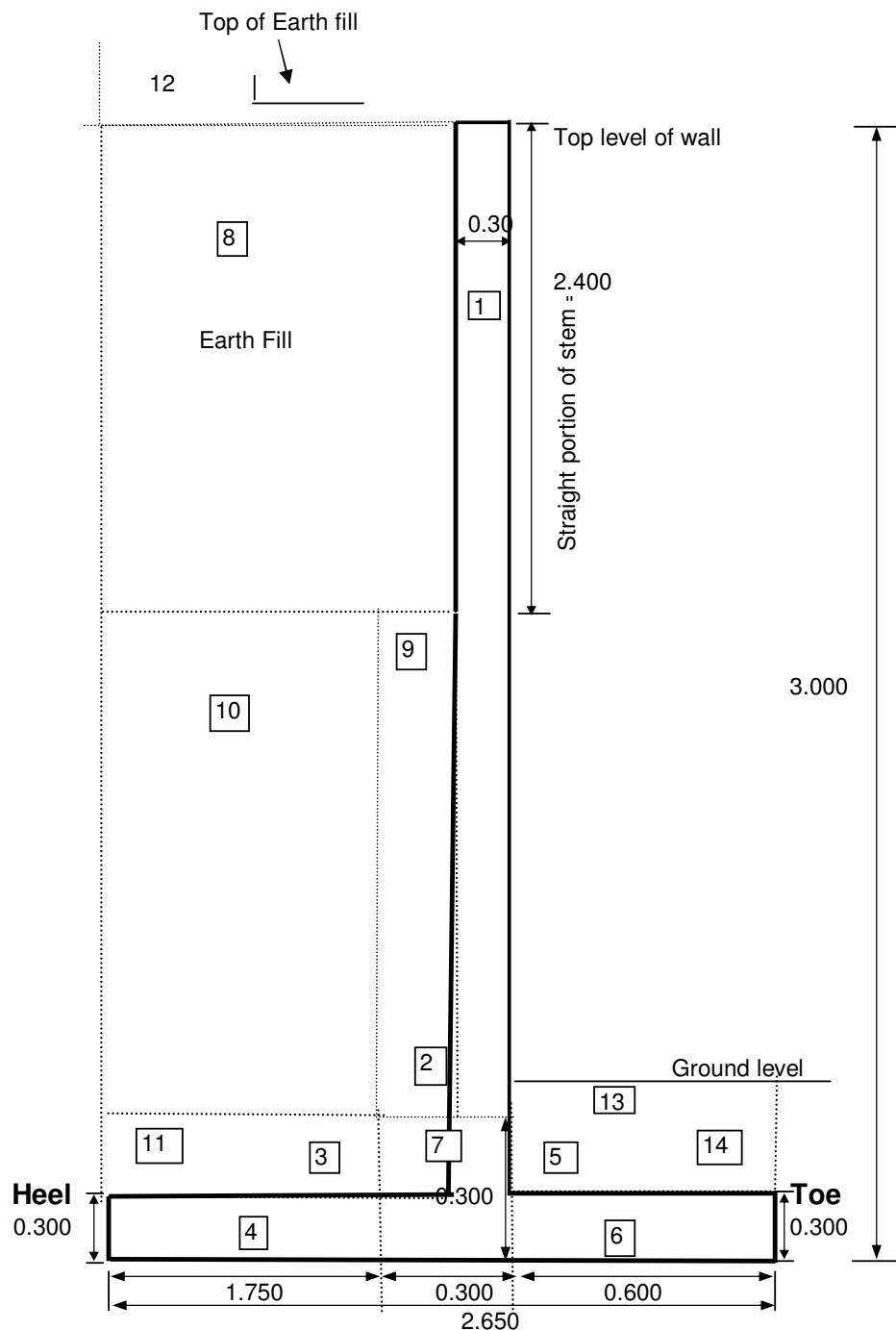
$$\text{Nominal Shear stress} = 6.62 \text{ t/m}^2$$

Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000

100As/bd	=	0.146 %
Therefore Permissible shear stress	=	18.36 t/m ² HENCE SAFE

DESIGN OF STEM BASE**Section A**

Height of Base of stem from top of earth fill = 1.7 m
 Height of Base of stem below straight portion = 5.6E-17 m


S.No.	Horz. Press due to	Area factor	Pressure $k_a.g.h$	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	0.855	1.7	0.727	0.714	0.52
2	L.L.Surcharge	1	0.603	1.7	1.026	0.850	0.87

Total = 1.75 1.39

Total Horizontal Force 1.75 t
 Total Moment about base 1.39 tm
 Design bending moment 1.39 t-m
 Effective depth required 0.133 m
 Thickness of stem at base 0.300 m
 Effective depth provided 0.238 > 0.133 **HENCE SAFE**
 Area of steel reqd. **3.14 cm²**

Shear check:

Shear force at base of stem 1.75 t
 Bending moment at base 1.39 t-m
 Net shear force 1.75 t
 Nominal Shear stress 7.38 t/m²
 Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000
 100As/bd = 0.15 %
 ActiveEarthPressure 18.40 t/m² **HENCE SAFE**

DESIGN OF RETAINING WALL FOR 3.000 m HEIGHT**DESIGN DATA:**

Top level of retaining wall	=	3.000 m
Ground level	=	1.000 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	3.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	25
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m ²

DESIGN CONSTANTS:

For Grade of concrete	= M 20	& HYSD reinf. with Fe 415
Lever arm factor j	=	0.902
Moment of resistance factor Q	=	111.996

DIMENSIONS :

Length of Base of Retaining wall	=	2.650 m
Section modulus	=	1.170 m ³
Length of Toe	=	0.600 m
Length of Heel	=	1.750 m
Thickness of Stem at base	=	0.300 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	2.400 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.300 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.300 m
Angle of inclined stem with vertical	=	0.000
Ht.of inclined portion of stem to base of footing	=	0.600 m
Ht.of inclined portion of stem to top of footing	=	0.300 m

Calculation of Earth pressure coefficients

Angle of internal friction of soil ϕ	=	30 deg	=	0.5236 rad
Angle of wall friction δ	=	20 deg	=	0.3491 rad
Angle of incli . of soil at back i	=	0 deg	=	0.0000 rad
Angle of incli . of stem at back α	=	90 deg	=	1.570796 rad
Coefficient of active earth pressure k_a	=	0.297		
Coefficient of horz.active earth pressure K_{ah}	=	0.279		

Calculation of Forces & moments due to Vertical Forces

S.No.	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	2.7	2.4	1.944	0.750	1.458
2		0.5	0.000	0.3	2.4	0.000	0.900	0.000
3	Wt of heel slab	0.5	1.750	0	2.4	0.000	1.483	0.000
4		1.0	1.750	0.3	2.4	1.260	1.775	2.237
5	Wt of toe slab	0.5	0.600	0	2.4	0.000	0.400	0.000
6		1.0	0.600	0.3	2.4	0.432	0.300	0.130
7	Wt.of intmdt.portion	1.0	0.300	0.3	2.4	0.216	0.750	0.162
8	Wt. of soil above heel slab	1.0	1.750	2.4	1.8	7.560	1.775	13.419
9		0.5	0.000	0.3	1.8	0.000	0.900	0.000
10		1.0	1.750	0.3	1.8	0.945	1.775	1.677
11		0.5	1.750	0	1.8	0.000	2.067	0.000
12		0.0	1.750	0.875	1.8	0.000	2.067	0.000
13	Wt. of soil above toe slab	0.0	0.6	0.7	1.8	0.000	0.300	0.000
14		0.0	0.6	0	1.8	0.000	0.200	0.000
15	L.L.Surcharge	0.0	1.75	1.2	1.8	0.000	1.775	0.000
Total forces =				12.357			19.08	
Total Vertical load =			12.36		Total Restoring moment =			19.08

Horz. components of Earth Pressure

S.No.	Horz. Press due to	Area factor	Pressure $k_{ah}h$	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure	0.5	1.509	3	2.263	1.260	2.85
2	L.L.Surcharge	1	0.603	3	1.810	1.500	2.72
Total forces =		4.073		5.57			

$$\begin{array}{llll} \text{Total overturning moment } Mo & = & 5.57 \text{ tm} & \text{Total vertical load } V = 12.357 \text{ t} \\ \text{Total restoring moment } Mr & = & 19.08 \text{ tm} & \text{Total Horz. Force} = 4.073 \text{ t} \end{array}$$

Factor of safety against overturning Mr/Mo = 3.43 OK > 2

Check for sliding :

$$\begin{array}{ll} \text{Coefficient of base friction} = 0.500 \\ \text{Total vertical force} = 12.357 \text{ t} \\ \text{Resisting force} = 6.18 \text{ t} \\ \text{F.O.S} = 1.52 \text{ OK} > 1.5 \end{array}$$

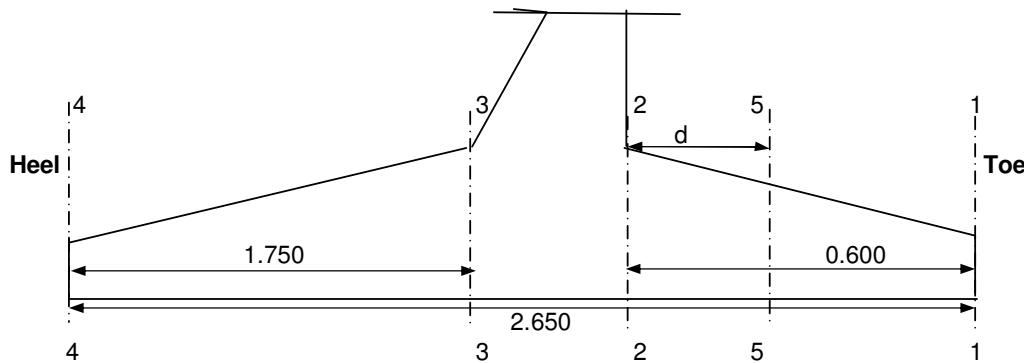
$$\text{C.G. of loads from toe} = Mr/V = 1.544 \text{ m}$$

$$\text{Eccentricity of loads w.r.t. c/l raft} = 0.219 \text{ m}$$

$$\text{Moment about c/l raft} = 2.709 \text{ t-m}$$

$$\text{Net moment about base } Mn = 2.858 \text{ t-m}$$

Calculation of Base Pressure


$$\text{Base pressure due to vertical load } V/A = 4.66 \quad \text{Pressure at toe} = 7.10 \text{ t/m}^2$$

$$\text{Base pressure due to moment } Mn/Z = 2.441 \quad \text{Pressure at heel} = 2.22 \text{ t/m}^2$$

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	7.104	5.999	5.446	2.222	6.705
Downward Pressure	0.720	0.720	5.580	5.580	0.720
Net pressure	6.384	5.279	-0.134	-3.358	5.985

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF TOE SLAB**Reinforcement calculation**

Bending Moment at face of stem	=	1.08 t-m	
Effective depth required	=	0.098 m	
Effective depth provided at face of stem	=	0.217 > reqd	0.098
Area of Reinforcement reqd. at bottom	=	2.71 cm ²	HENCE SAFE

Shear check:

Shear force at distance d from stem	=	2.37 t	
Bending moment at sec 5-5 =		0.46 t-m	
Net shear force at sec 5-5 = $S - M_s \cdot \tan\beta / d_1$ =		2.37 t	
Depth of slab at section 5-5 =		0.300	Effective depth $d_1 = 0.215$ m

Nominal Shear stress = 7.90 t/m²

Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000

100As/bd = 0.126 %

Therefore Permissible shear stress = 18.36 t/m² **HENCE SAFE**

DESIGN OF HEEL SLAB

Bending Moment at face of stem = 3.50 t-m

Effective depth required = 0.177 m

Effective depth of slab at face of stem = 0.215 m

Reinforcement reqd. at top = 8.85 cm²

Shear check:

Shear force at face of stem S = 3.06 t

Bending moment at face Ms = 3.50 t-m

Net shear force = $S - M_s \cdot \tan\beta / d_1$ = 3.06 t

Nominal Shear stress = 14.21 t/m²

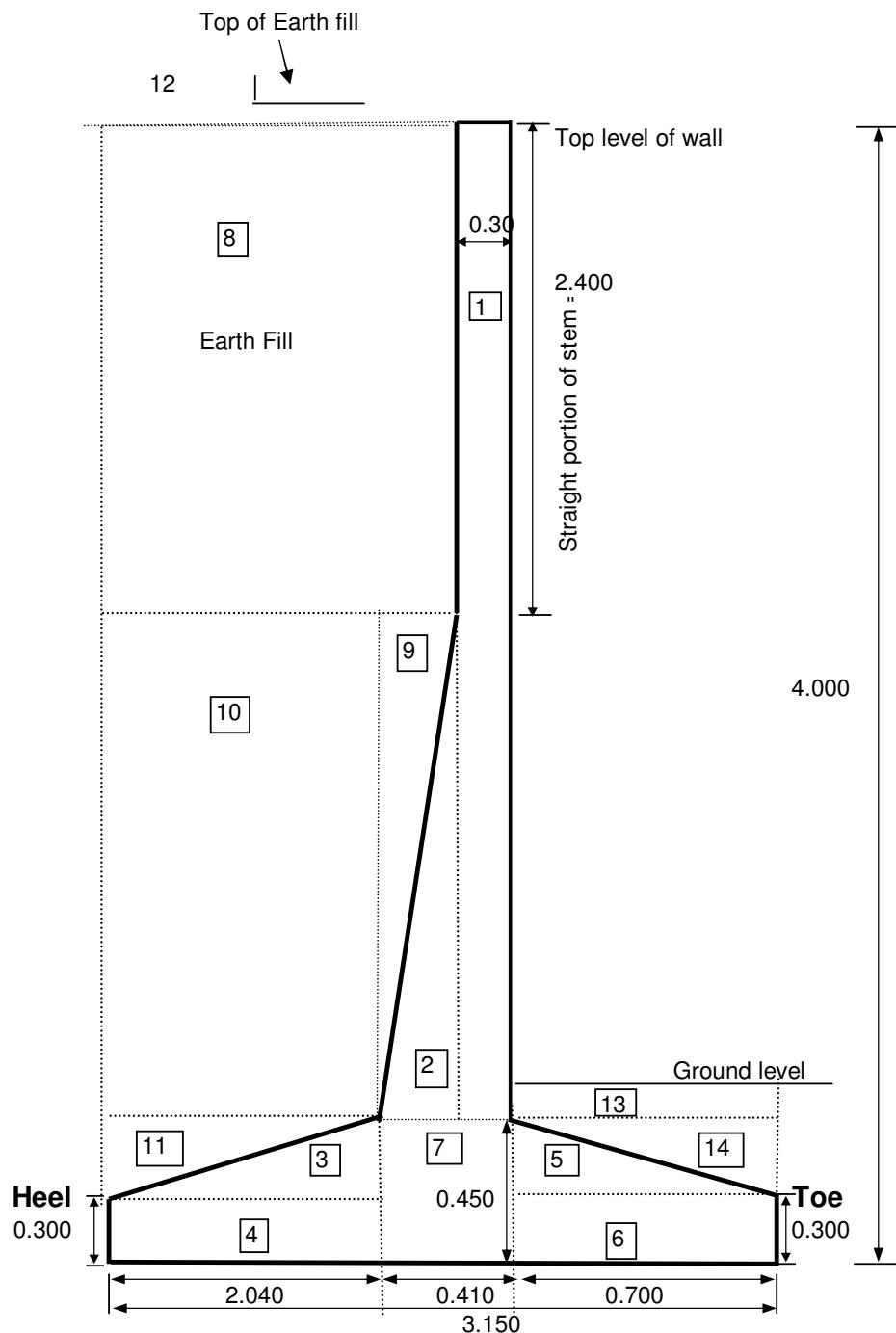
Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000

100As/bd = 0.412 %

Therefore Permissible shear stress = 27.71 t/m² **HENCE SAFE**

DESIGN OF STEM BASE**Section A**

Height of Base of stem from top of earth fill = 2.7 m
 Height of Base of stem below straight portion = 0.3 m


S.No.	Horz. Press due to	Area factor	Pressure $k_a.g.h$	Height	Horz. Force	C.G. from base	Moment about base
1	Active Earth Pressure	0.5	1.358	2.7	1.833	1.134	2.08
2	L.L.Surcharge	1	0.603	2.7	1.629	1.350	2.20

Total = 3.46 4.28

Total Horizontal Force 3.46 t
 Total Moment about base 4.28 tm
 Design bending moment 4.28 t-m
 Effective depth required 0.195 m
 Thickness of stem at base 0.300 m
 Effective depth provided 0.238 > 0.195 **HENCE SAFE**
 Area of steel reqd. **9.80 cm²**

Shear check:

Shear force at base of stem 3.46 t
 Bending moment at base 4.28 t-m
 Net shear force 3.46 t
 Nominal Shear stress 14.58 t/m²
 Permissible shear strssss is calculated as per cl.304.7.1.3 of IRC:21-2000
 $100As/bd = 0.41\%$
 Therefore Permissible shear strssss 27.75 t/m² **HENCE SAFE**

DESIGN OF RETAINING WALL FOR 4.000 m HEIGHT

DESIGN DATA:

Top level of retaining wall	=	4.000 m
Ground level	=	1.500 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	4.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	20
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m ²

DESIGN CONSTANTS:

For Grade of concrete	= M 20	& HYSD reinf. with Fe 415
Lever arm factor j	=	0.916
Moment of resistance factor Q	=	78.54

DIMENSIONS :

Length of Base of Retaining wall	=	3.150 m
Section modulus	=	1.654 m ³
Length of Toe	=	0.700 m
Length of Heel	=	2.040 m
Thickness of Stem at base	=	0.410 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	2.400 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.450 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.450 m
Angle of inclined stem with vertical	=	0.096
Ht. of inclined potion of stem to base of footing	=	1.600 m
Ht. of inclined potion of stem to top of footing	=	1.150 m

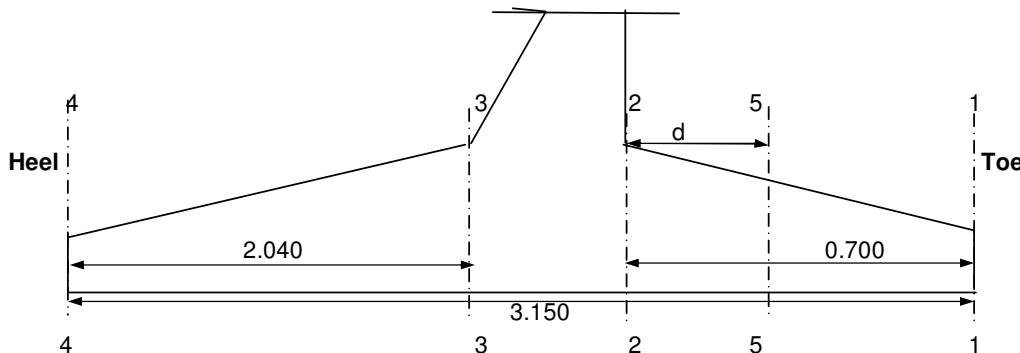
Calculation of Earth pressure coefficients

Angle of internal friction of soil ϕ	=	30 deg	=	0.524 rad
Angle of wall friction δ	=	20 deg	=	0.349 rad
Angle of incli . of soil at back i	=	0 deg	=	0.000 rad
Angle of incli . of stem at back α	=	90 deg	=	1.57080 rad
Coefficient of active earth pressure k_a	=	0.297		
Coefficient of horz.active earth pressure K_{ah}	=	0.279		

Calculation of Forces & moments due to Vertical Forces

S.N o.	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	3.55	2.4	2.556	0.850	2.173
2		0.5	0.110	1.15	2.4	0.152	1.037	0.157
3	Wt of heel slab	0.5	2.040	0.15	2.4	0.367	1.790	0.657
4		1.0	2.040	0.3	2.4	1.469	2.130	3.129
5	Wt of toe slab	0.5	0.700	0.15	2.4	0.126	0.467	0.059
6		1.0	0.700	0.3	2.4	0.504	0.350	0.176
7	Wt.of intmdt.portion	1.0	0.410	0.45	2.4	0.443	0.905	0.401
8	Wt. of soil above heel slab	1.0	2.150	2.4	1.8	9.288	2.075	19.273
9		0.5	0.110	1.15	1.8	0.114	1.073	0.122
10		1.0	2.040	1.15	1.8	4.223	2.130	8.995
11		0.5	2.040	0.15	1.8	0.275	2.470	0.680
12		0.0	2.150	1.075	1.8	0.000	2.434	0.000
13	Wt. of soil above toe slab	0.0	0.7	1.1	1.8	0.000	0.350	0.000
14		0.0	0.7	0.15	1.8	0.000	0.233	0.000
15	L.L.Surcharge	0.0	2.15	1.2	1.8	0.000	2.075	0.000

Total forces = **19.517** **35.82**Total Vertical load = **19.52** Total Restoring moment = **35.82****Horz. components of Earth Pressure**


S.N o.	Horz. Press due to	Area factor	Pressure $k_{ah}\gamma h$	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure	0.5	2.012	4	4.023	1.680	6.76
2	L.L.Surcharge	1	0.603	4	2.414	2.000	4.83
Total forces =					6.437	11.59	

Total overturning moment M_o = **11.59** tm Total vertical load V = **19.517** tTotal restoring moment M_r = **35.82** tm Total Horz. Force = **6.437** t**Factor of safety against overturning M_r/M_o = 3.09 OK > 2****Check for sliding :**Coefficient of base friction = **0.500**Total vertical force = **19.517** tResisting force = **9.76** tF.O.S **1.52 OK > 1.5**C.G. of loads from toe = M_r/V = **1.835** mEccentricity of loads w.r.t. c/l raft = **0.260** mMoment about c/l raft = **5.083** t-mNet moment about base M_n = **6.504** t-m**Calculation of Base Pressure**Base pressure due to vertical load V/A = **6.20** Pressure at toe = **10.13** t/m^2 Base pressure due to moment M_n/Z = **3.933** Pressure at heel= **2.26** t/m^2

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	10.129	8.381	7.357	2.263	9.212
Downward Pressure	0.720	1.080	7.470	7.380	0.891
Net pressure	9.409	7.301	-0.113	-5.117	8.321

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF TOE SLAB**Reinforcement calculation**

Bending Moment at face of stem	=	2.13 t-m
Effective depth required	=	0.165 m
Effective depth provided at face of stem	=	0.367 > reqd
Area of Reinforcement reqd. at bottom	=	3.11 cm² HENCE SAFE

Shear check:

Shear force at distance d from stem	=	2.95 t
Bending moment at sec 5-5 =		0.50 t-m
Net shear force at sec 5-5 = $S \cdot M_s \cdot \tan\beta / d_1$ =		2.58 t
Depth of slab at section 5-5 =		0.371 Effective depth $d_1 = 0.286$ m
Nominal Shear stress =		6.94 t/m ²

Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000

100As/bd =	=	0.109 %
Therefore Permissible shear stress =		18.36 t/m ² HENCE SAFE

DESIGN OF HEEL SLAB

Bending Moment at face of stem =		7.18 t-m
Effective depth required	=	0.302 m
Effective depth of slab at face of stem =		0.365 m
Reinforcement reqd. at top =		10.53 cm²

Shear check:

Shear force at face of stem S =		5.33 t
Bending moment at face Ms =		7.18 t-m
Net shear force = $S \cdot M_s \cdot \tan\beta / d_1$ =		3.89 t
Nominal Shear stress =		10.65 t/m ²
Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000		

100As/bd =	=	0.289 %
Therefore Permissible shear stress =		23.70 t/m ² HENCE SAFE

FOR CURTAILMENT

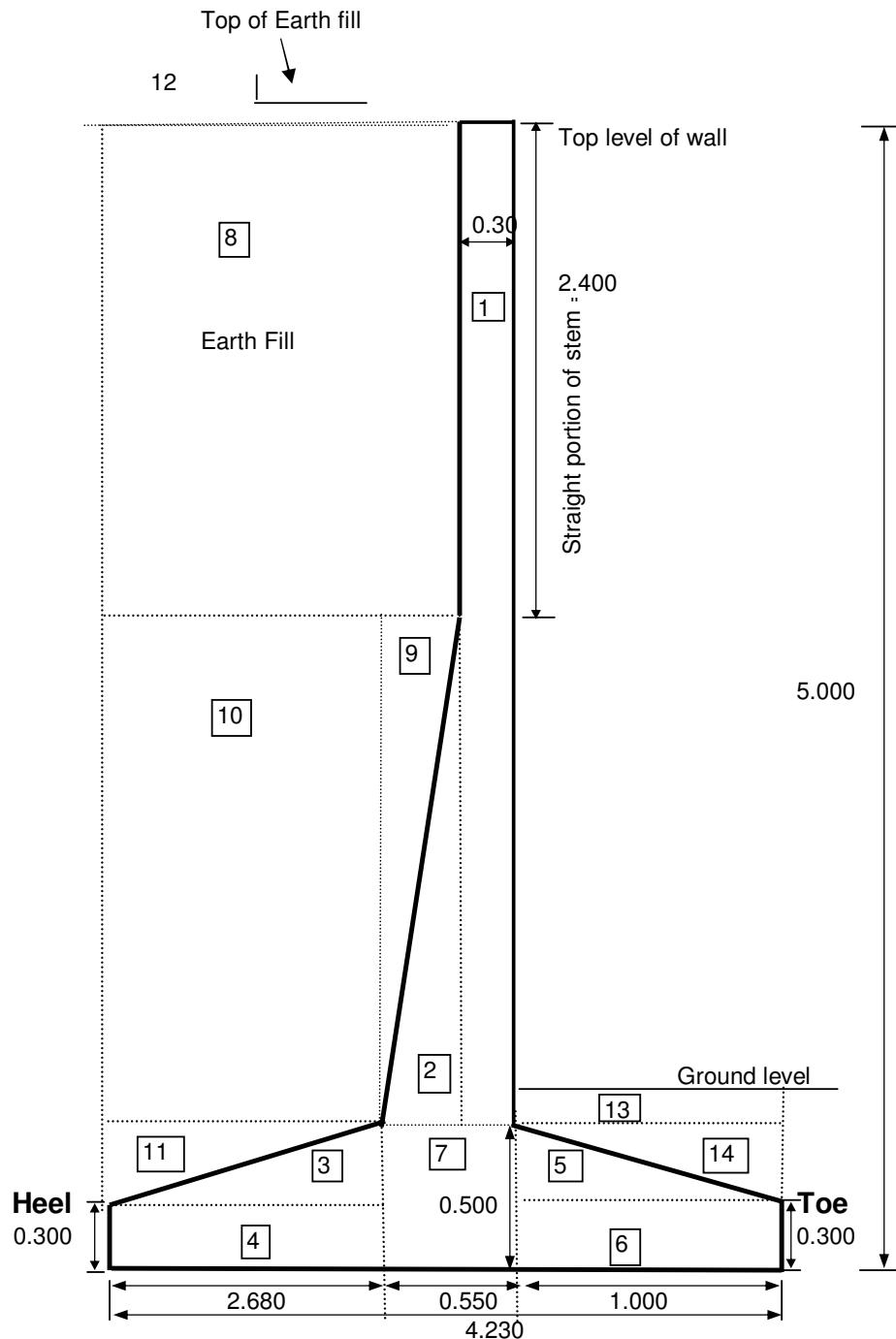
Shear Force at distance from stem =		123.873
Bending Moment at distance 2.000 m from face of stem =		0.00
Effective depth required	=	0.007 m
Effective depth provided	=	0.220 > reqd
Curtailment Length	=	2.220
Area of Reinforcement reqd. at bottom	=	0.01 cm²

DESIGN OF STEM BASE

Section A

Height of Base of stem from top of earth fill = 3.55 m
 Height of Base of stem below straight portion = 1.15 m

S.No.	Horz. Press due to	Area factor	Pressure k _a .g.h	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	1.785	3.55	3.169	1.491	4.72
2	L.L.Surcharge	1	0.603	3.55	2.142	1.775	3.80


Total = 5.31 8.53

Total Horizontal Force 5.31 t
 Total Moment about base 8.53 tm
 Design bending moment 8.53 t-m
 Effective depth required 0.330 m
 Thickness of stem at base 0.410 m
 Effective depth provided 0.348 > 0.330 **HENCE SAFE**
 Area of steel reqd. 13.14 cm²

Shear check:

Shear force at base of stem 5.31 t
 Bending moment at base 8.53 t-m
 Net shear force 2.96 t
 Nominal Shear stress 8.53 t/m²
 Permissible shear strss is calculated as per cl.304.7.1.3 of IRC:21-2000
 $100As/bd = 0.38\%$

Therefore Permissible shear strss 26.63 t/m² **HENCE SAFE**

DESIGN OF RETAINING WALL FOR 5.000 m HEIGHT**DESIGN DATA:**

Top level of retaining wall	=	5.000 m
Ground level	=	1.500 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	5.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	20
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m ²

DESIGN CONSTANTS:

For Grade of concrete	= M 20	& HYSD reinf. with Fe 415
Lever arm factor j	=	0.916
Moment of resistance factor Q	=	78.54

DIMENSIONS :

Length of Base of Retaining wall	=	4.230 m
Section modulus	=	2.982 m ³
Length of Toe	=	1.000 m
Length of Heel	=	2.680 m
Thickness of Stem at base	=	0.550 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	2.400 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.500 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.500 m
Angle of inclined stem with vertical	=	0.119
Ht.of inclined portion of stem to base of footing	=	2.600 m
Ht.of inclined portion of stem to top of footing	=	2.100 m

Calculation of Earth pressure coefficients

Angle of internal friction of soil ϕ	=	30 deg	=	0.524 rad
Angle of wall friction δ	=	20 deg	=	0.349 rad
Angle of incli . of soil at back i	=	0 deg	=	0.000 rad
Angle of incli . of stem at back α	=	90 deg	=	1.571 rad
Coefficient of active earth pressure k_a	=	0.297		
Coefficient of horz.active earth pressure K_{ah}	=	0.279		

Calculation of Forces & moments due to Vertical Forces

S.No.	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	4.5	2.4	3.240	1.150	3.726
2		0.5	0.250	2.1	2.4	0.630	1.383	0.871
3	Wt of heel slab	0.5	2.680	0.2	2.4	0.643	2.443	1.572
4		1.0	2.680	0.3	2.4	1.930	2.890	5.577
5	Wt of toe slab	0.5	1.000	0.2	2.4	0.240	0.667	0.160
6		1.0	1.000	0.3	2.4	0.720	0.500	0.360
7	Wt.of intmdt.portion	1.0	0.550	0.5	2.4	0.660	1.275	0.842
8	Wt. of soil above heel slab	1.0	2.930	2.4	1.8	12.658	2.765	34.998
9		0.5	0.250	2.1	1.8	0.473	1.467	0.693
10		1.0	2.680	2.1	1.8	10.130	2.890	29.277
11		0.5	2.680	0.2	1.8	0.482	3.337	1.610
12		0.0	2.930	1.465	1.8	0.000	3.254	0.000
13	Wt. of soil above toe slab	0.0	1	1.0	1.8	0.000	0.500	0.000
14		0.0	1	0.2	1.8	0.000	0.333	0.000
15	L.L.Surcharge	0.0	2.93	1.2	1.8	0.000	2.765	0.000

Total forces = **31.806** **79.68**Total Vertical load = **31.81** Total Restoring moment = **79.68****Horz. components of Earth Pressure**

S.No.	Horz. Press due to		Area factor	Pressure $k_{ah}\gamma h$	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure		0.5	2.514	5	6.286	2.100	13.20
2	L.L.Surcharge		1	0.603	5	3.017	2.500	7.54
Total forces =						9.303	20.74	

Total overturning moment M_o = 20.74 tm Total vertical load V = 31.806 tTotal restoring moment M_r = 79.68 tm Total Horz. Force = 9.303 t**Factor of safety against overturning M_r/M_o = 3.84 OK > 2****Check for sliding :**

Coefficient of base friction = 0.500

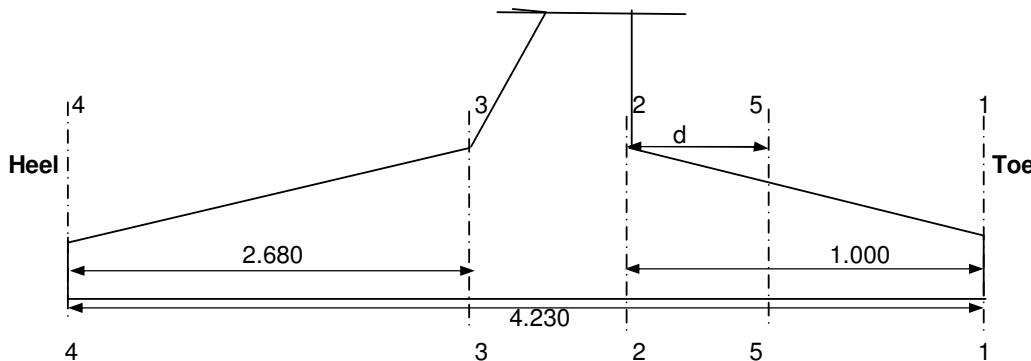
Total vertical force = 31.806 t

Resisting force = 15.90 t

F.O.S 1.71 OK > 1.5

C.G. of loads from toe = M_r/V = 2.505 m

Eccentricity of loads w.r.t. c/l raft = 0.390 m


Moment about c/l raft = 12.416 t-m

Net moment about base M_n = 8.328 t-m**Calculation of Base Pressure**Base pressure due to vertical load V/A = 7.52 Pressure at toe = **10.31** t/m²Base pressure due to moment M_n/Z = 2.793 Pressure at heel= **4.73** t/m²

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	10.312	8.991	8.265	4.726	9.761
Downward Pressure	0.720	1.200	9.300	9.180	1.000
Net pressure	9.592	7.791	-1.035	-4.454	8.761

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF TOE SLAB**Reinforcement calculation**

Bending Moment at face of stem	=	4.50 t-m	
Effective depth required	=	0.239 m	
Effective depth provided at face of stem	=	0.417 > reqd	0.239
Area of Reinforcement reqd. at bottom	=	5.78 cm ²	HENCE SAFE

Shear check:

Shear force at distance d from stem	=	5.35 t	
Bending moment at sec 5-5 =		1.58 t-m	
Net shear force at sec 5-5 = $S \cdot M_s \cdot \tan\beta / d_1 =$		4.40 t	
Depth of slab at section 5-5 =		0.417	Effective depth $d_1 = 0.332$ m
Nominal Shear stress =		10.55 t/m ²	

Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000
 $100As/bd = 0.174\%$

Therefore Permissible shear stress = 19.35 t/m² **HENCE SAFE**

DESIGN OF HEEL SLAB

Bending Moment at face of stem =		11.90 t-m	
Effective depth required	=	0.389 m	
Effective depth of slab at face of stem =		0.415 m	
Reinforcement reqd. at top =		15.36 cm ²	

Shear check:

Shear force at face of stem S =		7.35 t	
Bending moment at face Ms =		11.90 t-m	
Net shear force = $S \cdot M_s \cdot \tan\beta / d_1 =$		5.21 t	
Nominal Shear stress =		12.57 t/m ²	
Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000			

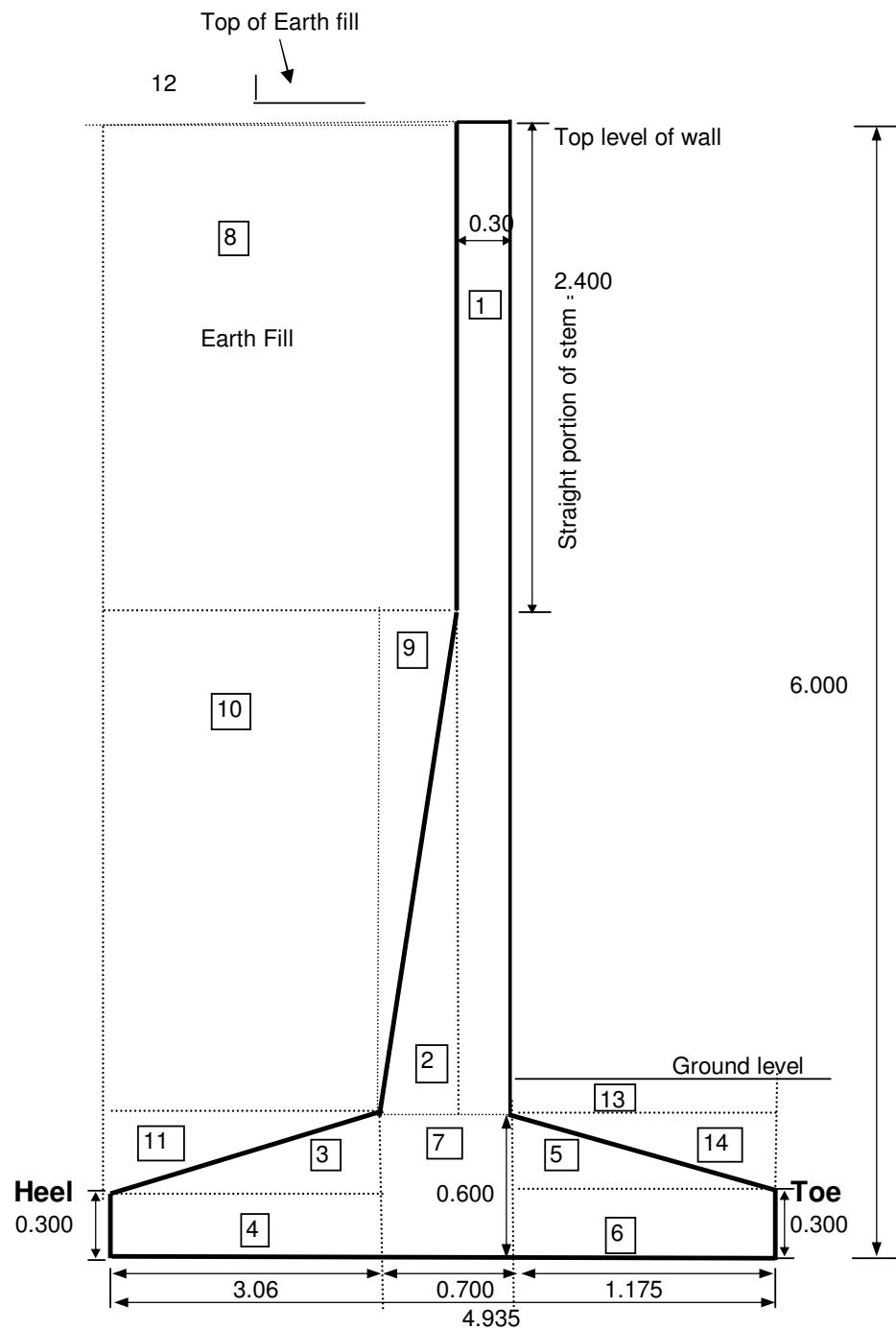
$100As/bd = 0.370\%$
 Therefore Permissible shear stress = 26.36 t/m² **HENCE SAFE**

FOR CURTAILMENT

Shear Force at distance from stem =		2.259	
Bending Moment at distance 1.500 m from face of stem =		2.27	
Effective depth required	=	0.170 m	
Effective depth provided	=	0.305 > reqd	0.170
Curtailment Length	=	1.805	
Area of Reinforcement reqd. at bottom	=	3.99 cm ²	

DESIGN OF STEM BASE**Section A**

Height of Base of stem from top of earth fill = 4.5 m
 Height of Base of stem below straight portion = 2.1 m


S.No.	Horz. Press due to	Area factor	Pressure k _a .g.h	Height	Horz. Force	C.G. from base	Moment about base
1	Active Earth Pressure	0.5	2.263	4.5	5.092	1.890	9.62
2	L.L. Surcharge	1	0.603	4.5	2.716	2.250	6.11

Total = 7.81 15.73

Total Horizontal Force 7.81 t
 Total Moment about base 15.73 tm
 Design bending moment 15.73 t-m
 Effective depth required 0.448 m
 Thickness of stem at base 0.550 m
 Effective depth provided 0.488 > 0.448 **HENCE SAFE**
 Area of steel reqd. **17.29 cm²**

Shear check:

Shear force at base of stem 7.81 t
 Bending moment at base 15.73 t-m
 Net shear force 3.97 t
 Nominal Shear stress 8.13 t/m²
 Permissible shear strssss is calculated as per cl.304.7.1.3 of IRC:21-2000
 $100As/bd = 0.35\%$
 Therefore Permissible shear strssss 25.86 t/m^2 **HENCE SAFE**

DESIGN OF RETAINING WALL FOR 6.000 m HEIGHT**DESIGN DATA:**

Top level of retaining wall	=	6.000 m
Ground level	=	2.000 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	6.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	20
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m ²

DESIGN CONSTANTS:

For Grade of concrete	= M	20	& HYSD reinf. with Fe 415
Lever arm factor j	=	0.916	
Moment of resistance factor Q	=	78.54	

DIMENSIONS :

Length of Base of Retaining wall	=	4.935 m
Section modulus	=	4.059 m ³
Length of Toe	=	1.175 m
Length of Heel	=	3.060 m
Thickness of Stem at base	=	0.700 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	2.400 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.600 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.600 m
Angle of inclined stem with vertical	=	0.133
Ht. of inclined portion of stem to base of footing	=	3.600 m
Ht. of inclined portion of stem to top of footing	=	3.000 m

Calculation of Earth pressure coefficients

Angle of internal friction of soil ϕ	=	30 deg	=	0.524 rad
Angle of wall friction δ	=	20 deg	=	0.349 rad
Angle of incl. of soil at back i	=	0 deg	=	0.000 rad
Angle of incl. of stem at back α	=	90 deg	=	1.571 rad
Coefficient of active earth pressure K_a	=	0.297		
Coefficient of horz. active earth pressure K_{ah}	=	0.279		

Calculation of Forces & moments due to Vertical Forces

S.No.	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	5.4	2.4	3.888	1.325	5.152
2		0.5	0.400	3	2.4	1.440	1.608	2.316
3	Wt of heel slab	0.5	3.060	0.3	2.4	1.102	2.895	3.189
4		1.0	3.060	0.3	2.4	2.203	3.405	7.502
5	Wt of toe slab	0.5	1.175	0.3	2.4	0.423	0.783	0.331
6		1.0	1.175	0.3	2.4	0.846	0.588	0.497
7	Wt.of intmdt.portion	1.0	0.700	0.6	2.4	1.008	1.525	1.537
8	Wt. of soil above heel slab	1.0	3.460	2.4	1.8	14.947	3.205	47.906
9		0.5	0.400	3	1.8	1.080	1.742	1.881
10		1.0	3.060	3	1.8	16.524	3.405	56.264
11		0.5	3.060	0.3	1.8	0.826	3.915	3.235
12		0.0	3.460	1.73	1.8	0.000	3.783	0.000
13	Wt. of soil above toe slab	0.0	1.175	1.4	1.8	0.000	0.588	0.000
14		0.0	1.175	0.3	1.8	0.000	0.392	0.000
15	L.L.Surcharge	0.0	3.46	1.2	1.8	0.000	3.205	0.000
Total forces =						44.287	129.81	
Total Vertical load =			44.29	Total Restoring moment =				129.81

Horz. components of Earth Pressure

S.No.	Horz. Press due to	Area factor	Pressure $k_{ah}\gamma h$	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure	0.5	3.017	6	9.052	2.520	22.81
2	L.L.Surcharge	1	0.603	6	3.621	3.000	10.86
Total forces =						12.673	33.67

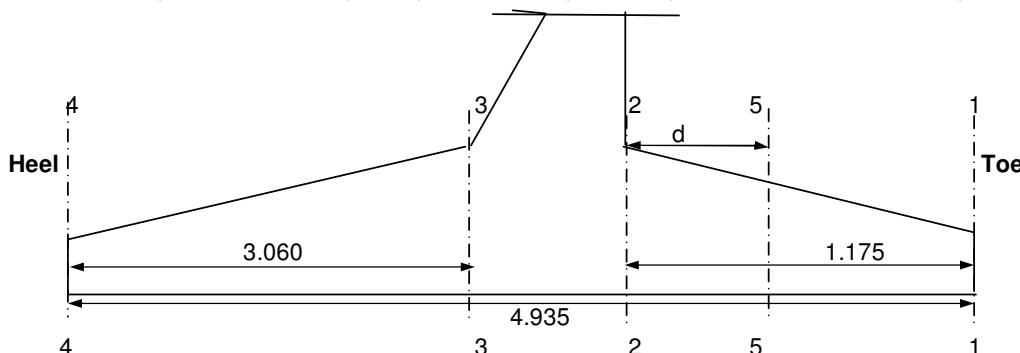
Total overturning moment M_o = 33.67 tm Total vertical load V = 44.287 t
 Total restoring moment M_r = 129.81 tm Total Horz. Force = 12.673 t

Factor of safety against overturning M_r/M_o = 3.85 OK > 2

Check for sliding :

Coefficient of base friction = 0.500
 Total vertical force = 44.287 t
 Resisting force = 22.14 t
 F.O.S 1.75 OK > 1.5
 C.G. of loads from toe = M_r/V = 2.931 m
 Eccentricity of loads w.r.t. c/l raft = 0.464 m
 Moment about c/l raft = 20.531 t-m
 Net moment about base M_n = 13.142 t-m

Calculation of Base Pressure


Base pressure due to vertical load V/A = 8.97 Pressure at toe = 12.21 t/m²

Base pressure due to moment M_n/Z = 3.238 Pressure at heel= 5.74 t/m²

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	12.212	10.670	9.752	5.736	11.531
Downward Pressure	0.720	1.440	11.160	10.980	1.122
Net pressure	11.492	9.230	-1.408	-5.244	10.409

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF TOE SLAB**Reinforcement calculation**

Bending Moment at face of stem	=	7.41 t-m
Effective depth required	=	0.307 m
Effective depth provided at face of stem	=	0.519 > reqd
Area of Reinforcement reqd. at bottom	=	7.65 cm² HENCE SAFE
Shear check:		
Shear force at distance d from stem	=	7.18 t
Bending moment at sec 5-5 =		2.40 t-m
Net shear force at sec 5-5 = $S - M_s \cdot \tan\beta / d_1$ =		5.58 t
Depth of slab at section 5-5 =		0.467 Effective depth $d_1 = 0.382$ m

Nominal Shear stress = 11.95 t/m^2
Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000

100As/bd	=	0.200 %
Therefore Permissible shear stress	=	20.40 t/m^2 HENCE SAFE

DESIGN OF HEEL SLAB

Bending Moment at face of stem =	=	18.56 t-m
Effective depth required	=	0.486 m
Effective depth of slab at face of stem =	=	0.517 m
Reinforcement reqd. at top =		19.24 cm²

Shear check:

Shear force at face of stem S =	=	10.18 t
Bending moment at face Ms =		18.56 t-m
Net shear force = $S - M_s \cdot \tan\beta / d_1$ =		6.66 t
Nominal Shear stress =		12.88 t/m^2

Permissible shear stress is calculated as per cl.304.7.1.3 of IRC:21-2000

100As/bd	=	0.372 %
Therefore Permissible shear stress	=	26.42 t/m^2 HENCE SAFE

FOR CURTAILMENT

Shear Force at distance from stem =	=	2.991
Bending Moment at distance 2.000 m from face of stem =		2.17
Effective depth required	=	0.166 m
Effective depth provided	=	0.321 > reqd
Curtailment Length	=	2.321
Area of Reinforcement reqd. at bottom	=	3.62 cm²

DESIGN OF STEM BASE**Section A**

Height of Base of stem from top of earth fill = 5.4 m
 Height of Base of stem below straight portion = 3 m

S.No.	Horz. Press due to	Area factor	Pressure k _a .g.h	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	2.716	5.4	7.332	2.268	16.63
2	L.L.Surcharge	1	0.603	5.4	3.259	2.700	8.80


Total = 10.59 25.43

Total Horizontal Force 10.59 t
 Total Moment about base 25.43 tm
 Design bending moment 25.43 t-m
 Effective depth required 0.569 m
 Thickness of stem at base 0.700 m
 Effective depth provided 0.640 > 0.569 **HENCE SAFE**
 Area of steel reqd. **21.28 cm²**

Shear check:

Shear force at base of stem 10.59 t
 Bending moment at base 25.43 t-m
 Net shear force 5.29 t
 Nominal Shear stress 8.27 t/m²
 Permissible shear strssss is calculated as per cl.304.7.1.3 of IRC:21-2000
 $100As/bd = 0.33\%$

Therefore Permissible shear strssss 25.13 t/m² **HENCE SAFE**

DESIGN OF RETAINING WALL FOR 7.000 m HEIGHT**DESIGN DATA:**

Top level of retaining wall	=	7.000 m
Ground level	=	2.000 m
Founding Level	=	0.000 m
Total Height from top of wall to founding level	=	7.000 m
Density of earth	=	1.8 t/m ³
Density of concrete	=	2.4 t/m ³
Clear cover to Reinforcement	=	0.05 m
Clear cover to Reinforcement for foundations	=	0.075 m
Grade of concrete	=	20
Allowable stress in steel	=	20380
Safe bearing capacity	=	20 t/m ²
Safety factor against overturning	=	2.0
Safety factor against sliding	=	1.5
Depth of L.L.Surcharge	=	1.2 m
L.L.Surcharge on wall	=	0 t/m ²

DESIGN CONSTANTS:

For Grade of concrete	= M	20	& HYSD reinf. with Fe 415
Lever arm factor j	=	0.916	
Moment of resistance factor Q	=	78.54	

DIMENSIONS :

Length of Base of Retaining wall	=	5.100 m
Section modulus	=	4.335 m ³
Length of Toe	=	1.200 m
Length of Heel	=	3.100 m
Thickness of Stem at base	=	0.800 m
Thickness of straight portion of stem	=	0.300 m
Ht. of straight portion of stem	=	2.400 m
Minimum thickness of Toe slab	=	0.300 m
Thickness of Toe slab at junction with stem	=	0.625 m
Minimum thickness of heel slab	=	0.300 m
Thickness of heel slab at junction with stem	=	0.625 m
Angle of inclined stem with vertical	=	0.126
Ht. of inclined portion of stem to base of footing	=	4.600 m
Ht. of inclined portion of stem to top of footing	=	3.975 m

Calculation of Earth pressure coefficients

Angle of internal friction of soil ϕ	=	30 deg	=	0.524 rad
Angle of wall friction δ	=	20 deg	=	0.349 rad
Angle of incl. of soil at back i	=	0 deg	=	0.000 rad
Angle of incl. of stem at back α	=	90 deg	=	1.571 rad
Coefficient of active earth pressure K_a	=	0.297		
Coefficient of horz. active earth pressure K_{ah}	=	0.279		

Calculation of Forces & moments due to Vertical Forces

S.No.	Description	Area Factor	width	Depth	Density	Weight	C.G. from Toe	Moment about toe
1	Wt of stem	1.0	0.300	6.375	2.4	4.590	1.350	6.197
2		0.5	0.500	3.975	2.4	2.385	1.667	3.975
3	Wt of heel slab	0.5	3.100	0.325	2.4	1.209	3.033	3.667
4		1.0	3.100	0.3	2.4	2.232	3.550	7.924
5	Wt of toe slab	0.5	1.200	0.325	2.4	0.468	0.800	0.374
6		1.0	1.200	0.3	2.4	0.864	0.600	0.518
7	Wt.of intmdt.portion	1.0	0.800	0.625	2.4	1.200	1.600	1.920
8	Wt. of soil above heel slab	1.0	3.600	2.4	1.8	15.552	3.3	51.322
9		0.5	0.500	3.975	1.8	1.789	1.833	3.279
10		1.0	3.100	3.975	1.8	22.181	3.550	78.741
11		0.5	3.100	0.325	1.8	0.907	4.067	3.688
12		0.0	3.600	1.8	1.8	0.000	3.901	0.000
13	Wt. of soil above toe slab	0.0	1.2	1.4	1.8	0.000	0.600	0.000
14		0.0	1.2	0.325	1.8	0.000	0.400	0.000
15	L.L.Surcharge	0.0	3.6	1.2	1.8	0.000	3.300	0.000
Total forces =						53.376	161.60	
Total Vertical load =			53.38	Total Restoring moment =				161.60

Horz. components of Earth Pressure

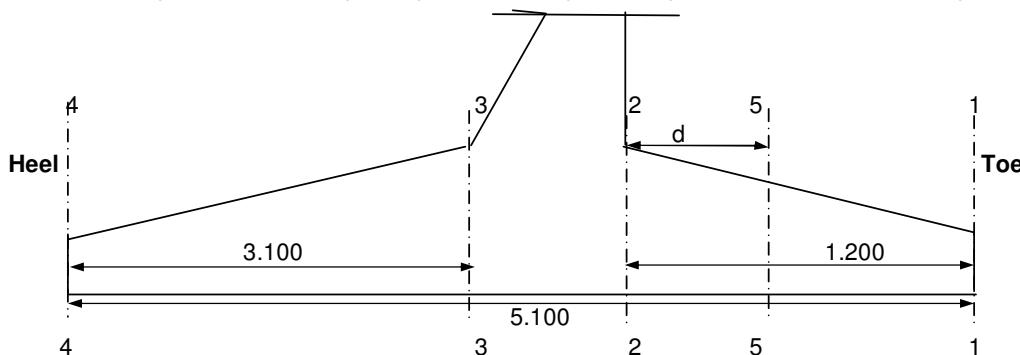
S.No.	Horz. Press due to	Area factor	Pressure $k_{ah}\gamma h$	Height	Horz. Force	C.G. from Toe	Moment about toe
1	Active Earth Pressure	0.5	3.520	7	12.321	2.940	36.22
2	L.L.Surcharge	1	0.603	7	4.224	3.500	14.78
Total forces =						16.545	51.01

Total overturning moment M_o = 51.01 tm Total vertical load V = 53.376 t
 Total restoring moment M_r = 161.60 tm Total Horz. Force = 16.545 t

Factor of safety against overturning M_r/M_o = 3.17 OK > 2

Check for sliding :

Coefficient of base friction = 0.500
 Total vertical force = 53.376 t
 Resisting force = 26.69 t
 F.O.S 1.61 OK > 1.5
 C.G. of loads from toe = M_r/V = 3.028 m
 Eccentricity of loads w.r.t. c/l raft = 0.478 m
 Moment about c/l raft = 25.496 t-m
 Net moment about base M_n = 25.512 t-m


Calculation of Base Pressure

Base pressure due to vertical load V/A = 10.47 Pressure at toe = 16.35 t/m²
 Base pressure due to moment M_n/Z = 5.885 Pressure at heel= 4.58 t/m²

CALCULATION OF DESIGN PRESSURES

Section	1-1	2-2	3-3	4-4	5-5
Upward pressure	16.351	13.582	11.735	4.581	15.096
Downward Pressure	0.720	1.500	12.975	12.780	1.146
Net pressure	15.631	12.082	-1.240	-8.199	13.949

** Positive net pressure means upward pressure & negative net pressure means downward pressure

DESIGN OF TOE SLAB**Reinforcement calculation**

Bending Moment at face of stem	=	10.40 t-m
Effective depth required	=	0.364 m
Effective depth provided at face of stem	=	0.544 > reqd
Area of Reinforcement reqd. at bottom	=	10.24 cm² HENCE SAFE

Shear check:

Shear force at distance d from stem	=	9.70 t
Bending moment at sec 5-5 =		3.24 t-m
Net shear force at sec 5-5 = $S - M_s \cdot \tan\beta / d_1$ =		7.47 t
Depth of slab at section 5-5 =		0.478 Effective depth $d_1 = 0.393$ m
Nominal Shear stress =		15.63 t/m ²

Permissible shear strss is calculated as per cl.304.7.1.3 of IRC:21-2000
 $100As/bd = 0.261\%$

Therefore Permissible shear strss =		22.79 t/m ² HENCE SAFE
-------------------------------------	--	--

DESIGN OF HEEL SLAB

Bending Moment at face of stem =		28.25 t-m
Effective depth required	=	0.600 m
Effective depth of slab at face of stem =		0.542 m
Reinforcement reqd. at top =		27.92 cm²

Shear check:

Shear force at face of stem S =		14.63 t
Bending moment at face Ms =		28.25 t-m
Net shear force = $S - M_s \cdot \tan\beta / d_1$ =		9.17 t
Nominal Shear stress =		16.91 t/m ²

Permissible shear strss is calculated as per cl.304.7.1.3 of IRC:21-2000
 $100As/bd = 0.515\%$

Therefore Permissible shear strss =		30.91 t/m ² HENCE SAFE
-------------------------------------	--	--

FOR CURTAILMENT

Shear Force at distance from stem =		5.204
Bending Moment at distance 2.000 m from face of stem =		3.96
Effective depth required	=	0.225 m
Effective depth provided	=	0.332 > reqd
Curtailment Length	=	2.332
Area of Reinforcement reqd. at bottom	=	6.39 cm²

DESIGN OF STEM BASE**Section A**

Height of Base of stem from top of earth fill = 6.375 m
 Height of Base of stem below straight portion = 3.975 m

S.No.	Horz. Press due to	Area factor	Pressure k _a .g.h	Height	Horz. Force	C.G. from base	Moment about base
1	ActiveEarthPressure	0.5	3.206	6.375	10.219	2.678	27.36
2	L.L.Surcharge	1	0.603	6.375	3.847	3.188	12.26

Total = 14.07 39.62

Total Horizontal Force 14.07 t
 Total Moment about base 39.62 tm
 Design bending moment 39.62 t-m
 Effective depth required 0.710 m
 Thickness of stem at base 0.800 m
 Effective depth provided 0.740 > 0.710 **HENCE SAFE**
 Area of steel reqd. **28.68 cm²**

Shear check:

Shear force at base of stem 14.07 t
 Bending moment at base 39.62 t-m
 Net shear force 7.33 t
 Nominal Shear stress 9.91 t/m²
 Permissible shear strssss is calculated as per cl.304.7.1.3 of IRC:21-2000
 $100As/bd = 0.39 \%$
 Therefore Permissible shear strssss 26.93 t/m² **HENCE SAFE**